— —
S -

HF B
Newsletter

Issue 7 o STOq User Club

Plus:
* More Public Domain games and demos

* Speaktext + 10-Liners « Mixer Intro
» Working between resolutions ...and more!

BITS AND BOBS

EDITORIAL by Aaron Fothergill

Greetings STOS users! Welcome to my first
issue of the newsletter, which is packed with
usefull programs, hints and tips for just about all
of you. Going on the information gained from
your re-subscription forms, it would seem that
most STOS club members are in the beginner or
moderate programmer league. There would also
seem to be a lot of members out there who have
been programming hard and have done demos or
games. More for them later...

Apologies to those of you who have writtenin
with queries. Hopefully a lot of them will be
answered in this newsletter, and I will be going
through therest and replying in the nextnewslet-
ter, or by post (if you sent an SAE). There might
be a slight delay though, as I got them all in a
rather large bundle at the same time as the re-
subscriptions came in!

For those of you who are attempting to get to
grips with STOS, there’s a new section. Called
“Absolute Beginners”, it will be aimed at those
of you who would like to program a game, but
don’tknow where to begin. It will help users who
haven’tevenprogrammed in BASIC before, and
will also be useful to those converting to STOS
from another language.

You will notice the plastic thing that came
with your newsletter. Throw it into your disc
drive, and you should have STOS Word, a
powerful word processor written in STOS —~ it
was used to write all the listings for this article.
Ifyourdiscis damaged or doesn’tload, thensend
itback to me forreplacement, enclosing an SAE.

Using STOS Word

STOS Word can either be run as a STOS acces-
sory, a STOS program or as a Gem desktop
program. Its best use is from STOS where you
canuseitto edit text files at the same time as you
are developing a program. To load STOS Word
as an accessory type:
ACCLOAD “STOSWORD”)

Then access it with the Helpkey as you would
with any other accessory. If you want to use
STOS Word as anormal STOS program (so that

2

you can modify it), type:
LOAD “STOSWORD.ACB”

...and Bob’s your uncle (assuming you have an
unclenamed Bob!). The version on the disc is the
full version of STOS Word, the only difference
between your version and the release version is
thattherelease version will be fully packaged and
will contain a printed manual plus a few tricks.
STOS Word is not public domain and can be
upgraded as new versions are released for a
minimal fee. By the way, this newsletter was
written using STOS Word on a 520ST (before
transfering to an Apple Mac for layout).

Speaktext!!

Martin Taylor of Essex has managed to come up
with a hack for Speaktext, thus enabling it to be
used from within STOS. After some horren-
dously awkward machine-code programming
Speaktext can now be loaded in as a memory
bank and called from STOS.

‘Features’

It would seem that there are quite a few undocu-
mented features and bugs in STOS and, as such,
they have eamed themselves a regular column.
Please write in or phone with anything unusual
you find in STOS, as it will be passed on to
Mandarin so that they canmake STOS and AMOS
even better. First a bug which came up while I
was writing STOS Word, and which was spotted
by several STOS users. The MID$ function
doesn’t always work correctly. The example that
Martin Taylor (again!) sent in explains this bug
the simplest way. In the following program:

10 input A$: rem Enter say “ABC”
20 B$=A$

30 mid$(A$,1,1)="X"

40 print B$

You would expect B still to contain “ABC”
as a copy of the original A$. But it doesn’t — it
contains “XBC”. Both Martin and myself con-
tacted Mandarin, who explained that after IN-
PUT (and Inkey$) commands STOS still regards

BITS AND BOBS

BS as the same variable as A$ due to amild case
of bug (the variable pointers are the same). It can
be programmed around by using A$=
mid$(A3,1,N-1)+"X"+mid$(A$,N+1)instead of
mid§(A$,N,1)="X". Hopefully this bug will be
~ fixed in STOS Plus.

Undocumented bits

Unearthed by Martin Taylor and Stephés Hill
almost simultaniously is the fact that you can
leave out the sprite frame number from the sprite
command. For example, when you are moving a
sprite around, but not changing it, you only need
to do the SPRITEN,X,Y,P command once to put
the sprite on the screen, then you only need
SPRITE N,X,Y to move it around!

A few users have noticed the fact that the
screen copy command isn’t totally limited to
multiples of 16 on the X axis. The area to be
copied from can be any X and Y co-ordinate,
although the area to be copied to mustbe ona 16
pixel boundary for the X value.

PROTECT.BAS

After upgrading STOS to V2.4 with the public
domain upgrade disc, some users have found
difficulty in using the protect program to ‘fix’
their run-only programs so that STOS cannot be
copied. This is because the upgrade changes the
name of the main code file for STOS, so to

convert PROTECT.BAS to work with V2.4 type:

LOAD “PROTECT.BAS”,

Change “BASIC.BIN” to “BASIC204BIN”,
save “PROTECT.BAS” — and it will now work!
However Version 2.5 is now available — which
works with the brand new Atari STE series. So
from now on all references will be to V2.5 of
STOS as this is the most up-to-date version. Re-
member, itonly costs £2 (or£1 and a disc) to get
the upgrade disc from the PD Library!

Music while loading

Quite a few people have noticed that you cannot
play music or samples while loading a program

ormemory bank. This occurs when either RUN- .

ning another program from aloader, or LOADing
a .MBX file. However, music will still play over
aBLOAD, aswill samples. So to getmusicto play
whenloading in amemory bank, BSAVEitasraw
data, and BLOAD it. The switching offis caused
when STOS re-calculates the locations of the
memory banks when reserving or erasing them.

.MAP Files

There are still a few people out there stuck with
MAP files and how to load them. If you want to
load the raw data for the map i.e. the MAP file;
youmustuse the BLOAD “mapname.MAP”,addr
to load it in. Although the recommended way of
using the maps is to use the map definer program
to save the map routine as an Ascii file, whichyou
then merge in with your program. That way, all
the data for the map is contained in data state-
ments.

STOS 3D Extension

As mentioned in the last issue, the 3D extension
for STOS is currently being written. Having seen
the early spec it looks pretty impressive as the
commands are being written to be very similar to

" the existing sprite commands. So you could de-

fine a 3D object, and then move and animate it
under interrupts ! There will be full details, of
course, whenI gethold of a copy sometime early
next year.

STOS Book

As mentioned in the last issue “Game Maker’s
Manual: Atari ST and STOS Basic” by Stephen
Hill should be released soon by Sigma Press. It
should be available through your local bookshop
in January priced £11.95 for 280 or so pages.
Hopefully I will be reviewing it for the nextissue.

Raceway

The Raceway Program in the lastissue has caused
a few problems with 520ST owners, it would
seem that it just won’t fit. Ouch !

n
3

ADVERTISEMENT

Create high-speed mapping
games with ease!

Yes, you too can write scrolling games like Gauntlet!
TOME (The Total Map Editor) contains everything you
need to produce some amazing games—and to show you
what's possible TOME comes with a free game, Tin
Glove, in a compiled fonn with sampled sound, and as
a Basic listing.

TOME provides a specially-written machine-code
extension which adds 10 new commands to STOS.
There's also a powerful map editor with many unique
features —no wonder it's already being used by some of
the top ST programmers to write their latest machine-
code games.

TOME comes complete with a 10-page manual Only £14.95
which explains how you can make the most of this (£1895 for non-STOS Club
excellentnew package. The manual and two discs come members)
attractively presented in a white A4 vinyl wallet. Available now!

Climb into your Spitfire - cmd
it's "chocks away’!

Take to the skies in Skystrike Plus — the deluxe version
of the title that's on Games Galore.

561evels of dogfighting, tank-busting, train-demol-
ishing, battleship-sinking, ground-attacking actionover
401 detailed screens.
+ 17 frames a second screen update (the same as Xenon

I

« Sampled sound effects '

» Loads of hidden features Only £9.95

« Intro demo disc with three-way parallax scrolling, (£11.95 for non-STOS Club
stunning graphics and sampled soundtrack members)

« Fully compiled — no need to own STOS Maestro Available now!

Both titles written by Aaron Fothergill and work on both 520ST and 1040ST.
Send cheque or postal order payable to Shadow Software to:
Shadow Software, North Devon .

LISTINGS

{:é Seeing stars ¥

The following programhas been written by Roger
Isaac from an idea and program by Paul Robin-
son. Roger would like to make contact with other
STOS users, so get in touch at the following
address: Balby, Doncaster, South Yorkshire .

10 rem Parallax Starfield Generator

20 T1=16 : T2=16

30 key off : curs off : flash off : hide : cls
40 palette
$0,$777,$555,0,0,0,0,0,0,0,0,0,0,0,0,0

50 rem Options

60 print “Parallax Starfield - Roger Isaac
1989.” : print -

70 print “F1 - Generate Starfield”

80 print “F2 - Quit Program”

90 print : print “WHEN STARFIELD IS
ON-SCREEN, PRESS” : print

100 print “F1 - To Save Starfield As
Degas Screen (STARFLD.PI1)”

110 print “F2 - To Save Starfield As Neo
Screen (STARFLD.NEO)”

120 print “F3 - Return To Menu”

130 on fkey goto 150,280

140 goto 130

150 cls : print “THIS MIGHT TAKE A
WHILE.” : print “ANY KEY TO BEGIN.” :
wait key : cls

160 rem Generate Starfield

170 for M=4 to 12

180 for N=1 to 20

190 Y=rnd(199-((12-M)*T1))+((12-M)*T2)/2
200 P=rnd(13)+2

210 for X=0 to 319 step M

220 ink P : plot X,Y : dec P

230 if P=1 then P=15

240 next X : next N : next M

250 shift 1,2

260 on fkey goto 300,330,30

270 goto 260

280 rem Quit!

290 default : end

300 rem Save Degas Screen

310 save “starfld.pi1”

320 goto 30

330 rem Save Neo Screen

340 save “starfld.neo”
350 ~cto 30

I Serolt i

This is a simple scroll routine written by Frangois
Lionet. Include aseries of spaces at the end of line
170 before the speech marks to ensure it works
properly.

100 key off

110 mode 0

120 curs off

130 hide on

140 V=1

150 def scroll 1,0,23*8 to 320,23*8+8,-V,0
160 def scroll 2,0,10*8 to 16,200,0,-V

170 TEXT$="Scrolling demo in STOS
Basic, by Frangois Lionet! *“

180 PSCROLL=1

190 repeat

200 scroll 1

210 CPT8=CPT8+V : if CPT8=8 then
CPT8=0 : locate 39,23 : print
mid$(TEXTS$,PSCROLL,1); : inc
PSCROLL : if PSCROLL>len(TEXTS$) then
PSCROLL=1

220 wait vbl

230 until mouse key or FLAG

240 default

Upgrade now!

If you are producing PRG versions of your
games or demos, it is essential that you up-
grade to the latest version of STOS otherwise
they won't work on the newest Ataris. Version
2.5 works with TOS 1.6 and the Atari STE
which is now on sale.

Simply send £2, or £1 plus adisc to Sandra
Sharkey at the STOS Public Domain Library.

ARTICLE

CGoinrnmag 'horiz'ohtal
aallGoinng horizomt

If T-get this one right, it could be the most inter-
nationally popular article ever published in a
clubmagazine. So far, we have been asked how
do you do horizontal scrolling from members in
Australia, New Zealand, Germany, Holland and
East Clacton! It would seem that just because
some inept programmer wrote in to a magazine
- and said thathorizontal scrolling was impossible
on the ST, just about everybody has been trying
to do it. Well here it is, not only possible, but in
STOS Basic! :
Basic Theory: The theory behmd all scrolling
is to grab a section of the screen and moveitto a
new location, then to put something where the
gap caused by the move has appeared. So, if you

had two screens in banks 5 and 6, and wanted to -

scroll horizontally from one to the other, you
would use something like this:

10 mode 0:key off:reserve as work 5 :
reserve as work-6:curs off
20 load “Mypici1.Pi1”,5 : load
“Mypic2.Pi1”,6 : rem Change the names
to whatever picture files you want to
scroll
30 X=0: screen copy 5 to back:screen
copy 5 to logic
40 screen copy back,16,0,320,200 to
back,0,0 : rem Move the screen 16
'pixels left
50 screen copy 6 X,0,X+16,200 to
back,304,0 : rem Cover the gap
60 screen copy back to logic: wait vbl
70 X=X+16 : if X<320 then 40

You will note that this screen scroller moves
at 16 pixels at a time, and goes very fast! Notice
also that I am using the variable X to tell STOS

where I want to grab the next chunk of the picture _

from. So what if you want to move the screen a
little smoother than 16 pixels at a go? Okay, you
reduce the difference between the area grabbed
and the size of the screen, using co-ordinates for
mstancehke4 0,320,200 instead 0£16,0,320,200.
However, when you try and stick the gap cover-
6

ing on the edge, it won't work, as STOS can only

_put graphics down on a 16 pixel boundary when
“using screen copy.and screen$! The trick is to

only place the 16 pixel wide covering down when
thereis agap of 16 pixels.attheedge. Thisis alittle
messy when you can see the gap, so it is usually
done in the background out of sight oreven better
on a totally different screen. This example uses
the lines 10-20 from the last program:

30 C=0 : X=0 : rem C counts the number
of pixels in the gap.
50 reserve as screen 7 : rem Reserve
ourselves a screen to work on
60 screen copy 5to 7
70 screen copy 7,1,0,320,200 to 7,0,0 :
rem Scroll it 1 pixel at a time

" 80 C=C+1 : rem 1 pixel scroll so add 1 to
Cc
90 C=C mod 16 ; rem Wrap c round at 16
100 if C=0 then screen copy

- 6,X,0,X+16,200 to 7,304,0 : X=X+16 :
If C=0 then there is a 16 pixel gap. Go for
it}
110 screen copy 7,0,0,30_4,200 10
back,0,0:screen copy back to logic:wait.
vbl : rem Show jt (it would of course be
better with screen flip
120 if X<320 then 70

You will probably have noticed the 16 pixel
border to the right of the screen — this stops you
viewing the scrambled section of the scroll, and if
you were using this routine in a game, you could -
cover it up with your scoreboard. These basic
Toutines can be used in’ almost any form. For
instance you could use them to create a scrolling

~ backdrop that is many screens long by putting in

a screen number variable (instead of the 6), load-
ingupmore than two screens, and when X reaches
320, you set X to 0 and add one to the screen

number (that’s the New Zealand contingent

happy!). The only other problem now is how to

“place a sprite over this scrolling background

without causing all sorts of clashes. Simple: Do

ARTICLE

an UPDATE OFF command at the start of your
program, and place the sprite just after the area of
screen 7 has been copied to the background and
logical screens (on line 110) then when all your
sprites have been placed, do an UPDATE com-
mand to show them. There is of course an easier
way to do all of this, just buy the TOME map
system (sorry about the shameless plug!) so that
you can store your backgroundmap as tiles.Ifyou
don’t want to fork out the measly £14.95 that you
need to buy this wonderful program (that’s enough
of that!), here’s a chance to win a copy! This is
also the 10-liner competition for this issue. The
best horizontally-scrolling game written in 10
lines (yes itis possible) will win a full copy of the
TOME system (see the add for details of TOME)
including the demo game “Tin Glove”, and vari-
ous programs to show you how to do all sorts of
tricks with TOME. As this is quite a difficult
challenge, Thave wavered the previous rule about
having a maximum of 10k of external files.

The rules ror this one are :
« No programs longer than 10 lines.
» No machine code (at all!)
» Program must be sent in on a disc, with all
relevant files.

As with the previous 10-liner competition, the |

winning entry, and some of the better losers, will
be put together on a compilation disc as one game
with each mini game being a level of the main
game. Just think — 40+ games on one disc! All
games on the compilation disc will earn their
authors a cut of the royalties so get programming
now! If you send a self addressed stamped enve-
lope (or Jiffy bag) with your disc, we’ll send it
back to you when the competition has beenjudged,
otherwise we’ll wait until you do send us a self
addressed stamped envelope! | |

-Free with every copy of Games Galore is STOS
Squasher, a powerful file compression routine.
Simply insert the routine in your STOS folder, then
when you boot up STOS you've got two new com-
mands: SQUASH and UNSQUASH so you'l be
able to compress your MBK and PRG files by up to
60%!

If you are stuck for space in your games, STOS
Squasher could be just what you're looking for.

= Word Mix =

This 10-line game has been written by Ralph
Effemey. Using the joystick to move a pointer
round agrid, try torearrange the letters so thatthe
key words are displayed correctly. To change the
game simply alter the words in the data state-
ments in line 90.

10 key off : mode 0 : curs off : flash off :
hide : locate 0,1 : centre “WORD MIX” :
locate 0,23 : centre “PRESS SPACE
FOR NEW WORDS” : on error goto 100
20 P=4 : for I=1to 4 : read A$: locate
16,P : print A$:inc P : next | : locate
15,11 : square 10,6,1 : pen 12 : for 1=16
to 23 : for J=4 to 7 : L=scrn(l,J)

30 A=rnd(8)+16 : B=rnd(4)+11 : if
scrn(A,B)<>32 then goto 30 else locate
A,B : printchr$(L) : next J : next1 :
X=xgraphic(19) : Y=ygraphic(12) : gr
writing 3

40 X=X+(jleft*8)-(jright*8) : Y=Y +(jup*8)-
(Jdown*8) : box X,Y to X+16,Y+16 : wait
20 : box X,Y to X+16,Y+16

50 if X<128 then X=128 else if X>176
then X=176 else if Y<96 then Y=96 else if
Y >112 then Y=112

60 if fire then bell : inc TR : locate 16,20
: print “TRIES=";TR : TX=xtext(X) :
TY=ytext(Y) : T1=scrn(TX,TY) :
T2=scrn(TX+1,TY) : T3=scrn(TX+1,TY+1)
: Td=scrn(TX,TY+1) : locate TX+1,TY :
print chr$(T1) : locate TX+1,TY+1 : print
chr$(T2) : locate TX,TY+1 : print
chr$(T3) : locate TX,TY : print chr$(T4) :
wait 20

70 if inkey$="* then cls : locate 0,1 :
centre “WORD MIX” : locate 0,23 :
centre “PRESS SPACE FOR NEW
WORDS” : TR=0 : goto 20

80 goto 40

90 data “ABSOLUTE”,”"MIRACLES”,
"TANGENTS”, "MANDARIN",
“SOFWARE”,”"COMPUTER”,”"KEYBOARD”,
”JOYSTICK”,”"DATABASE",”"BOOKWORM”,
"WORD MIX”,”DISC BOX”

100 restore 90 : resume

ABSOLUTE BEGINNERS

I

Here’s another ‘Appear’ effect — but this time
with more documentation! The ‘Mixer’. takes a
screen and separates it into two parts. One part
containing all the even lines and the other part all
the odd lines. It then scrolls them together to
make the whole screen. There are two lots of
comments for this program. The first comments
are for those of you who have done some BASIC
programming and are trying to convert to STOS.
The second set is for those of you who have done
very little programming at all. It assumes that
you know what variables are and how BASIC’s
line mimbering system works. If you don’t then
see the emergency teaching section below!

The Program

Bootup your STOS Language disc and type in
the following program. It is a good idea to read
the comments for each line as you type the line,
as this will help you understand better how the
commands work. Notice that there are no REMs
(Remarks) in this program — this is because they
make the lines look much longer and difficult,
and nobody types them in anyway! All the
comments on the program are listed later.

10 mode 0 : key off
20 curs off : hide on-
30 reserve as screen 5 reserve as
screen 6
40 T$="\STOS\PIC.PIH"
50 gosub 100 : :
60 rem Your program goes here (O.K so
I put a rem in, so what!)
100 screen copy logic to back auto-
back off .
110 load T$,5 : screen copy 5 to 6
120ink 0:foraOto 198 step 2

130 logic=6 '
140 draw 0,A to 319,A

150 logic=5 .
160 draw 0,A+1 to 319 A+1
170 next A : logic=back
180 get palette(5)
190 for A=0to 99 ’
200 screen copy 6,0,198-A*2,320,200 to
back,0,0
210 screen$(ba'ck,0,198-
A*2)=screen$(5,0,0 to 320,a*2+2)"
220 screen swap
230 wait vbl
240 next A
- 250 logic=physic
260 screen copy logic to back
270 return

Comments

[Note: The text in italics is extra for beginners.]
10 This sets up the screen in low resolution and _
removes the function keys from the top of the
screen. The MODE 0 command sets low resolu-
tion (mode 1 — sets medium resolution) and the
KEY OFF command gets rid of the function keys.
20 Here we remove the flashing text cursor and
the mouse. The CURS OFF command removes
the text cursor (CURS ON restores it) and HIDE
ON hides the mouse pointer. This is required as
either would ruin the screen effect. .
30 Reserves two screens in memory to put the

title picture into (one is for the even lines, the

other for the odd). STOS’ s reserve command can™
reserve areas of memory for all sort of data:
sprites, icons, fonts, machine code programs,
pictures and normal data. The RESERVE AS
SCREEN command is used to set up a memory
bank to store a PI or NEO format screen. We
are using it twice here to reserve banks 5 and 6,
now referred to as screens 5 and 6.

40 The variable T$ is set to hold the filename of
the screen you want to use. It must be a ,PI1 or
NEO screen. This demo is set up to use the title
screenfrom your STOS Ianguage disc which has
the filename “PIC.PI1” and it is in the folder
“STOS”, so we have to use the pathname’
“STOS\PICPII”

50 calls the picture routine. The Gosub command

“is one of BASIC's more useful commands. It

allows us to GO to a SUBroutine to do a set of |

ABSOLUTE BEGINNERS

commands, or mini program, and then to return
to the pointwherewe left off. So this program will
jump to line 100, and when it gets to the RETURN
command online270 it will returntojust after the
GOSUB 100 command (in this case line 60).

60 Ends the program. This is where the rest of
Your program would go. If you need more space
to put your program in, just renumber the subrou-
tine (lines 100-270) so that they are higher up in
the program and out of the way (lines 1000-1270
for instance).

The ‘Mixer’ Subroutine

100 copies the logical (work) screen to the back-
ground screen and sets AUTOBACK to OFF, so
that when graphics (in this case lines) are drawn,
they are not automatically copied to the back-
ground screen. STOS's screen system works like
this: You have a PHYSICal screen, which is the
oneyou see. There is also a BACK ground screen,
which contains a copy of the PHYSICal screen
without any sprites etc drawn on it. LOGIC (the
LOGICal screen) points to the screen that is
going to be drawn upon and is normally set to the
PHYSICal screen.

110 Load our picture into screen 5 and copyitinto

screen 6. All STOS’s graphics commands can be.

used to work on any screen, including those
reserved as memory banks. The picture is copied
toscreen 6 aswewillneed twoversions of it—one
made up of all the even numbered lines, and one
with all the Odd lines.

120 Set the drawing colour to 0 (background), and
start a count from 0 to 198. The INK 0 command
sets the drawing colour to that of the background
(Which is see-through in the SCREEN$() func-
tion). The FOR...TO command is used when you
want to do a function a set number of times. It
holds the count in the variable you assigned to it
—here we are using A. The STEP function tells it
how much to add to the counter on each loop.
When the program reaches a connecting NEXT
statement, i.e. NEXT A, it will add the step to A,
and loop back to just after the FOR..TO.STEP
function. In this case line 130. The first FOR...
NEXT loop, to divide up the screens.To createthe
effect of one screen containing all the even num-

bered lines, and the other containing all the odd
numbers. ones, we will draw lines in the back-
ground colour over each screen. Screen S will
have all the odd lines removed, and screen 6 will
have all the even lines removed.

130 set the logical screen pointer to screen 6, 5o
that we are working on that screen. By doing this,
we are telling STOS that from now onwe want to
workon screen 6, so all the graphic outputwill be
drawn on this screen.

140 draws a horizontal line across the screen.
Notice that for the Y co-ordinate of the command
(the second of each set), the variable A (which is
being used as the counter inthe FOR..TO.NEXT
loop) is used. This means that as the counter goes
up, the line is drawn further down the screen. As
the counter is going up in steps of 2, this will only
draw on even numbered lines.

150 tells STOS we want to work on screen S now.
See comments for line 130.

160 draws a horizontal line across the screen. As
with line 140, we are using the variable A for the
Y co-ordinate, but here we are using A+1, so the
line is being drawn one line further down, thus
drawing only on odd numbered lines.

170 The NEXT A command tells STOS to do the

- loop again until A is bigger than the second value

in the FOR..TO.. statement , in this case 198. By
doing logic=back, we are telling STOS to send all
the graphics to the background screen, out of
sight, but able to be instantly moved into view
(see the SCREEN SWAP command in line 220).
The first loop ends on line 170.

180 set the screen colours to those used in the
picture.

190 Another FOR.NEXT loop, again using A.
This time there is no STEP command, so the
default of 1 is used for the step.

200 Here we are copying a section from the
bottom upwards of screen 6, to the top of the
background screen. So that as the loop goes on,
more of screen 6 appears at the top of the screen,
making it look as if it is scrolling downwards.
Note that SCREEN COPY overwrites the screen
it is drawing fo, so that anything that was below
it is removed. : .
210 This time, we are copying a section of screen

9

ABSOLUTE BEGINNERS

5, from the top downwards, to the bottom of the
background screen. So that it appears to scroll
upwards. The SCREENS$() function alwaysworks
in'what is known as OR mode, so that whatever
is copied to a screen is mixed with whatever was
underneath it. So when the two areas of screen
meet in the middle, the lines will appear to mix.
220 The SCREEN SWAP command swaps over
whatever is on the BACK ground and PHYSICal
screens, so that our graphics which are hidden
away on the BACKground screen, are now in-
stantly visible. This is useful because you can
draw things out of sight and make them visible
only when they are finished, thus doing flicker-
free animation.

230 The WAIT VBL command tells STOS to
stop until the screen has finished updating. This
means thateach screen gets atleastone TV frame
(called a Vertical BLank) to be seen in, and thus
there is less flicker.

240 Another NEXT A, so that the program goes
back to line 200 to continue scrolling, until A is
greater than 99. The second loop has now ended.
250 We use LOGIC=PHYSIC to tell STOS that
we want to draw on the visible PHYSICal screen
again.

260 And to make sure the background is the same
as we are seeing, we copy the PHYSICal screen
to it (remember LOGIC now = PHYSIC).

270 RETURN jumps the subroutine back to
where it came from. Okay, now go for it!

Emergency Teaching Session

The programming above assumes that you know
what a variable is, and how BASIC’s line num-
bering system works. Here's an explanation of
both.

VARIABLES

The best way of thinking of variables is as little
boxes on a blackboard in which numbers are
written. Each variable has aname. In STOS this
name can be up to 31 characters long, and must
begin with a letter. As a number is written into
one of these boxes, the previous one is rubbed
out, so each variable only remembers the last
number that was entered into it. Whenever the
10

variables name is mentioned in a program state-
ment, it is replaced by its value, so when the
command PRINT A is issued, BASIC is really
thinking “PRINT whatever is in variable A”.

LINE NUMBERS .

All the old versions of BASIC used line numbers
to tell the computer where it was up to in a
program. Most modermn basics now use a method
where lines that the computerneeds to remember
have LABELs on them. However STOS was
written with the idea that most people program-
ming in it would be upgrading from 8-bit ma-
chines, so line numbers were kept. Each line of
commands for the program must have a line
numberin frontofit. The computer then executes
these lines in ascending order until it either runs
out of lines, or is stopped; either by an error, or a
STOP or END command. Some commands such
as GOTO and GOSUB (as used in this program)
make the computer move to another line. So the
command GOTO 50 would make the computer
move to line 50 and continue its work from there.

m
"N

Don'tforgetthatmembership to the STOS
Club entitles you to ring Aaron Fothergill
for assistance on any STOS-related sub-
ject.

Ring him on:

or write to:

ARTICLE

From high fo low

“Hi-res, who needs it?” would seem to be quite a
popular quote by programmers nowadays. How-
ever thenumber of ST owners who only have high
resolution monitors and a 1040STF is quite high,
especially in Germany, where it is estimated that
90% or so of ST owners work in high resolution.
Whether this is because DTP and music applica-
tions on the ST are so popular (the high res
monitoris really useful for both) or for some other
reason, I have no idea. But there is a sizable
market out there that is not being reached by
games programmers.

In the good old days, programs like Starglider
and so on worked in high resolution as well as low
resolution. Unfortunately, 99.9% oftoday’s games
will only work in Jow resolution, losing the writ-
ers valuable plugs on Saturday morning TV
(Climie Fisher mentioned on Going Live that 1/2
the time spent recording their album, they were
playing Starglider — a major plug directly to your
target market!).

Just think of all those uninspired musicians
and desktop publishers who can do nothing but
play old games and play with their four-in-a-row
desktop accessory ! Just think of the advertising
potential of inspiring a hit album by your game (I
can hear the titles now... “Alien Blasting Blues”,
“My love was an end of level guardian”...). So
how do you go about making your game compat-
ible with high resolution? Read on.

Access to a high resolution monitor is vital.
Youcan develop software using the various mono
emulator programs on a TV, but this leads to two
things: Severe eye strain and your graphic artist
trying to.strangle you with the mouse lead (Just
try drawing something in Degas Elite using a
mono emulator!).

It is usually okay to write your software on a
TV and then take it over your friend’s house to test
it on a mono monitor every weekend. The other
way around isn’t advisable, I've seen plenty of
games with people running around with green/

Working between

resolutions

purple/blue faces, and the sort of colour co-

. ordination that would make Cyndi Lauper look
* monochrome!

The only other things you mustremember are
that all your graphics functions should use some
sort of factor to size them for the resolution you
are working in, and check at the start of the
program for what mode the program is running
in.

Major Differences

The major differences between low and high
resolution are these:

a) Only 2 colours in High res (black and white).
b) The high resolution screen size is 640x400
pixels, this is where DIVX and DIVY come in
useful!

c) The hi-res screen is 80x25 text characters in
size, low res is 40x25 (The high resolution char-
acter setis twice as high as the low and medium
TES ones)

.d) You will get an error if you use a mode 2

command. However you can check for high reso-
lution, because mode=2!

The first thing your program should do is to check
for the resolution by looking at the reserved
variable MODE. If it equals 2, then you are in
highresolution. If it is 0 or 1 then you are in low
or medium resolution respectively. Then set up
some sizing variables. You already have DIVX
and DIVY — you might also want MULX and
MULY and MAXX,MAXY (with the maximum
X and Y co-ordinates for that screen size). The
formulae you would require (aren’t I nice?) are:

MAXX=640/divx
MAXY=400/divy
MULX=2/divx
MULY=2/divy

Another useful idea is to reference all your
colours in an array. Instead of doing commands

11

"ARTICLE

like inkn which will return an errorifn>1 inhigh
resolution. You could use ink CL(n) where the
array CL(15) holds the colour numbers usable in
that resolution. For Low res it would hold the
numbers 0-15. In medium res 0-3 repeating and
in high res it would simply hold 0’s and 1’s, so
you won’t get an illegal quantity error in high
resolution with a command like ink CL(12)
because CL(12)=0 in highres and 12 in low res!

Other things to watch out for are your sprites
and block graphics. If you are using sprites in a
multi resolution program, then you have to de-
fine the high resolution ones as well. If you are
Joading screens you must also do a high resolu-
tion version of each screen.

This is where many games writers decide that
the extra memory usage and development time
needed aren’t really worth doing for the extra
sales.

If you have enough spare memory in your
game, and a bit of time spare in your ever so
hurried development schedule then it is quite
easy to directly convert your low-res pictures to.
high-res and convert your sprites (remember: the
sprites2.acb program on the accessories disk
works in all three resolutions) and get yourself
some very grateful extra sales. If you are writing
utility programs it is almost vital that you get
them to work in high-res also.)

IThave made sure that both STOS Word and
TOME both work in all three resolutions. STOS
Word s the only word processor that can change
between medium and low resolution without
going back to the desktop, and TOME’s com-
mands work automatically in all three resolu-
tions — all you need to do is convert your tle
screenand adjust the window size with divx,divy.
The end result being that anyone can use it, no-
matter what monitor they are using, unless itis a
broken one, or an IBM (Irish Business Ma-
chines) paper white screen monitor with the
white text option.

So getconverting, and send in any ideas you
might have for a computer game inspired song
title (““You're always onmy high score table” by
PSB). Make a high resolution user happy today
—buy him a TV! =
12

Hi Happy STOS Users!

Yesterday night, at 6.30 (French time), Rich-
ard Vanner asked me, Francois Lionet, to
write afew words for the STOS Newsletter (a
few words in his mind means four or five
pages). I don’t personally mind, I'm quite
honoured, butwhat do you think of that? You
will have to read it! As Chris Payne always
tells me that I'm better at programming than
writing (maybe he hasread the original STOS
User’s Manual thatI wrote —my God), Thave
made aprogram for you (I'll have some more
in the next issue). HeHeHe!

The first one can be quite a good laugh! It
is a fake virus! No, don’t call the police yet,
I said fake: It does not copy itself, and just
affects STOS. In fact, it is a small extension
called VIRUS.EXF that you can put into a
friend’s STOS folder. He will not see it-
unless he goes every hour into the STOS
folder to see that everything is okay! When
STOS isloaded, the VIRUS.EXFisloaded as
anormal extension. It stays hidden for one
minute, and then starts to erase the screen
from the top to the bottom! It does not crash
anything, so you can go on STOSing —if you
can!.] bet the guy will think he has a virus in
his machine! Please be gentle, don’t let him
re-format all his discs and hard drive, stop
himbefore! Itis not dangerous, to stopit, just
remove VIRUS.EXF from STOS folder be-
fore booting! How to type it in?

1 Load the INPDATA.ACB accessory

2 Type the datas

3 Save the bank as VIRUS.MBK

4 Load the bank: LOAD “YIRUS.MBK”,10
5 Save the program: SAVE “VIRUS.EXE”,
START(10) TO START(10)+252

Now you have your magnificent little |
virus, ready to frighten friends! Turn to page
17 for the data table — and you'll find the as-
sembly language listing in the next issue of
the STOS Newsletter!

ARTICLE

Extending zones

STOS provides simple to use routines to deﬁne

rectangular zones onthescreen and to testwhether

ornot a particular sprite’s hot spot is within such

azone, namely “SET ZONE” and “=ZONE(n)”."

However there are limitations. The first is that
the zones must be rectangular, and the second is
the limit of 128 zones.

Itis possible in some cases to work round the
rectangle problem by using the “=DETECT (n)”
command, which allows you toidentify the colour
of the point bereath a sprite’s hot spot. But you
can’t always guarantee that a zone’s colour will
be unique.

I came across both these problems while
working on a project involving a large grid of

hexes. I wanted to accurately identify which hex - -

the mouse pointer was in when a mouse button
was pressed.

My solution was to create a data bank in
which-each byte was directly related to apointon
the display. The first byte of the data bank
identified the top left point of the screen display,

the niext byte the next point along the topline, and =~ _
50 on. In the program the following code was

used:

1000 A=start(6) : rem Get start of data -
bank

2000 repeat : until mouse key..O rem
Wait for no mouse key:

2100 repeat : until mouse key : rem Wait
for mouse key

2200 gosub 3000 : Call checklng routlne

by Keu‘h Thomasson

3000 X=x mouse : Y=y mouse : rem Get

mouse coordinates .

3100 B=X+(Y¥*320) : rem Calculate offset

::Note — constant of 320 is for low
resolution

3200 Z=peek(A+B) : rem Extracl zone

number

3300 return

Following a call to line 3000, the variable Z
contains a number which can be used by the rest
of the program to refer to the zone containing the
position of the mouse pointer. The use of the X
and Y variables in the above example is not
strictly necessary as the calculation in line 3100
could be carried out on x mouse and y mouse
directly.

. However the size of the data bank for a low
resolution display is large — 64,000 bytes. This
can be reduced by artificially coarsening the
resolution. This can be achxevedby including the

.followu1g line:

3050 X=bclr 0,X : Y=bclr 0,Y -

This has the effect of rounding down-odd
numbered values of X 'and Y to even values, so
that a 2x2 block on the screen is considered a
single point. This reduces the data bank size to
16,000 bytes, at the cost of accuracy. This can be
taken further if required. Itis possible to have any
number of zones using this method, but if more
than 255 are needed (as I found with the largest

hex grid I used) then

Resolution ~ Zones Data Bank (bytes) Constant " Commands |the size of the data
Low 1-255 64,000 320 peekfpoke | bank and the calcula-
Low >255 128,000 640 deek/doke | tion constant mustbe
Medium 1-255 128,000 640 peek/poke - doubled.and all ac-
Medium >255 256,000 1280 deek/doke | cess carried outusing
High 1-255 256,000 640 peek/poke | PEEK and DOKE,
High >255 512,000 1280 deek/doke | giving up to 65535

= : - discreet zomes! For

13

ARTICLE

reference, the basic data bank sizes and calcu-
lation constants required for different resolu-
tions and numbers of zones are as detailed in
the table below.

The data bank takes some work to create —
particularly if you are going to define zones of
differing shapes and sizes. I wrote a special
program to create the data bank, set up the
values using poke or doke, and saved it to disc.
The advantage here was that if something
changed, or I wanted to add new zomes, it was
relatively easy to modify the program and
recreate the data bank.

The beauty of this method is the speed with
which the value is returned — one short calcula-
tionfollowed by one peek or deek, and the zone
number is yours.

The accuracy of the method depends on any
artificial coarseness applied. High resolution
will almost certainly need some coarsening
unless you have memory to burn! The example
shown above is for use with the mouse, but
changing line 3000 to use x sprite and y sprite
gives you the ability to check the location of
any active sprite on the screen.

Thope you find this useful if you ever come
across the limitations of zone shape ornumbers
of zones.

(Right, I'm off to write a game that uses one
zone per pixel! — Aaron.) |

Drop us a line!

‘Whether you've got a problem — or just got
| something to say, we'd like to hear from you.
‘We're on the lookout for letters, articles
or suggestions to make the Newsletter even
better. You can use old-fashioned pen and
ink, but we'd be delighted toreceive Ascii or
STOS Word files together with a printout.
Hope to hear from you soon!

Aaron

14

Drawing numbers

Do youremember the good old days when arcade
games were real arcade games like Asteroids and
Space Wars? If so, do you remember the way all
the graphics were drawn as vectors, including the
scores? More recently, this was revived with the
Star Wars games although this time colours were
used! On some more ancient computers like the
goodold Apple][(happy sighs), the only way you
could plot sprite-like shapes to the screen was by
defining them as a series of vectors (although the
screen was bitmapped so people soon started
providing utilities to let you use normal raster
graphics).

Anyway I digress! Sometimes vector drawn
scores, numbers and lettering can be quite useful
—for instance where you want your mega game to
work in high resolution as well as low resolution
with the minimum of fuss, and without having to
have two different fonts in memory — vector
numbers can be easily re-sized. Because they use
the normal drawing routines they can be plotted
anywhere on the screen (So you don'thave touse
sprites to draw numbers). They do however have
the disadvantage of being a little bit slower —
although not by too much.

The following program defines the vectors
needed for the digits 0-9, and displays a counting
number at the mouse position. The numbers are
created from a grid of seven lines, like in a
calculator. These lines go thus:

The arrays VX() and VY() contain the start
and end co-ordinates of each of these lines from
the start of the digit. These co-ordinates are
multiplied by the variables SX and SY, so the
numbers can easily be re-sized.

The array N() contains the data for each
number, telling the routine which of the seven
lines to use.

LISTING

The subroutine atline 500 draws a single digit 23 data 1,0,1,1,0,1,1

—-ﬁrsterasmg the backgroundby drawing a block 24 d=22 0,1 11,1,01,0
behind it in colour 0, then drawing the digit in 25 data'1,1,0,1,0,1,1
colour 1. The variables TX and TY hold the top gg g::g :’;’2 ’;’;’: ’3
left co-ordinate of the digit. 28 data 1’171:1;111 :1

The routine at lm.e 510 draws out thenumber -~ 5g data 11 11,011
contained in the variable N§ at graphic co-ordi- 30 for A=010 6 : read . -
nates TX,TY. It uses the routine at line 500 to VX(A,0),VY(A,0),VX(A,1),VY(A,1) : next A
draw the individual numbers and is shown as an 39 rem data for vectors
example of modular programming with subrou- 40 data 0,0,1,0
tines. If] wanted to change the way the individual 41 data 0,0,0,1
digits were drawn, all I would have to do would be 42 data 1,0,0,1
to change the routine at line 500-509 without 43 data 0,1,1,0

44 data 0,1,0,1
45 data 1,1,0,1
46 data 0,2,1,0

having to worry about the string drawing routine
at line 510. Similarly if I wanted to change the

way the strings were-drawn I wouldn’t have to 49 hide on

change the digit drawing routine. Notice also that 50 auto back off : ink 1 : SX=2 : SY=2:
Thave turned autoback off. Try tumning iton to see TX=10 : TY=16 : SCRE=0 60 inc SCRE -
how much it slows the graphics down. Also try N$=right$(“00000”+str$(SCRE),5) : TX=x
_changing the values of the variables SX and SY as - mouse : TY=y mouse : gosub 510 : goto
these contain the size (in pixels) of the linesused 239 end o

to draw the digits. The drawing routines used in - .

this program. are not perfect and it would be - - 32?;“;;';2;?:: ;",;‘;‘;r N, Xsize SX,

interesting to see what you can come up with in

501 ink 0 : bar TX,TY to TX+SX,TY+SY*2 :
terms of faster, more efﬁ01ent routines.

ink 1 : A=0 : repeat : if N(N,A)=1 then
- - draw TX+VX(A,0)*SX,TY+VY(A,0)*SY to

1keyoff :cursoff:cls. = - oo 0)+ 1))SX,TYHVY(A0+VY(A,1
10.dim N(9,6),VX(6,1),VY(6,1) : for A=0 to ;X SKAXADP STV YAONYAT)
9 :for B=0to 6 : read N(A,B) : next B : . - 502 inc A : until A>6 : return

nextA : 510 rem print string of numbers N$ at co-
19 rem Data for numbers o . ordinates TX,TY .

20 data 1,1,1,0,1,1,1 ’ 511 P=1 : repeat : N_val(mld$(N$,P 1)) :

21 data 0,0,1,0,0,1,0 S gosub 500 : inc P : TX=TX+SX*2 : until

22 data 1,0,1,1,1,0,1 : : P>len(N$) : return

[]
Walkies!
For those of you trying desperately to work out
how tomake creatures move in arealistic way,
here are two examples which should be of use -
—and you'll find a ladybird on the next page. It
is important to match feet between frames in
order to convey the illusion of movement
realistically. .

TIf you decide to use these animations — or
would Iike to see more, please drop us a line.

MIDI

More on Midi

As promised in the last issue of the Newsletter,
here are some details on MIDI’s controller com=
mands. These are the commands MIDI uses for
control of things like volume, sustain, modula-
tion and so on. The command format (remember
the last article) is $Cn as the command byte and
two data bytes. The first of the data bytes is the
controllernumber and the second byte is the new
value. Thus to set the volume of a synth on
channe] 3 to 1/2 normal, we would send the
command $C2 (Controller Command Channel
3), $07 (Yolume controller number), $40 (range
is 0-$7F). Different synths have different con-
trollers, and there are some really weird ones out
there! Here are some of the most commonly
used:

Controller Value
Modulation Wheel 1
Breath Controller 2

Foot Modulation 4

(assuming you want to modulate your foot)
Portamento Time 5 (this is a fun one!)

Data entry Slider 6

VYolume 7

Pan 10

Sustain pedal 64

(controllers 64-127 are onloff controllers)
Portamento on/off 65

All notes off 123

(try this one to shut your synth up!)

A nice program to try might be one thatsends
a series of notes to a synth, along with random
pansettings if your synth uses the pan controller,
or for really freaky effects, random volume or
modulation settings!

e e TR AR

’”)JJ.JJ} ‘é

Communicating between games
Multi-player games are great fun when they are
played using a datalink between two computers.
Currently I think Stunt Car Racer and F16 Com-
bat Pilotrate as the best two data-linkable games.
RVF Honda would be up there with them but it
uses a completely non-standard cable which is
not worth the hassle!

But what if you want your STOS game to be
able to work multi-player? You could use the
RS232 routines if you want (thus needing an
expensive or awkward to make up Null Modem
lead) oryou coulduse the MIDIports and STOS’s
MIDI routines to send the data between the two
computers.

This has the advantage of being qulcker than
RS232, more convenient (MIDI cables are quite
cheap), and MIDI cables can be run up to 15
metres without loss of data.

Ishowed youin the Jast issue how to commu-
nicate between two ST’s, so all itneeds are some
minor modifications to send the data needed for
a game to work on a MIDI link. If you think about
it, what youneed to send to the other computer is
all the data thatrelates to what your computer is
doing.

So in a maze game where you and another
player are trying to reach the centre, each com-
puter needs to know where both players are, so
they can be displayed. So each computer must
send the position of its player to the other. The
difficult bit is synchronising the data transfer. So
it is usual for both computers to send a series of
values (1,2,3,4,5,6,7 etc) at the same time as
checking MIDI In for a series of rising values.

. ‘Wheneach computer detects the series of values,

it stops sending them and clears its MIDI buffer.-
Thus both computers are now ready to start the
game. Every frame (after the moves have been
made) each ST sends the co-ordinates of its
player using something like:

PUBLIC DOMAIN

open #3,”MIDI” Print#3,MYX :
Print#3,MYY

It then reads the data for the other computer’s
player from MIDI in by:

input #3,HISX : input #3,HISY

Note thelack of a semi-colon after the PRINT -

— this is where STOS’s MIDI annoyance is actu-
ally quite useful.

That’s basically it, so try and convert one of
your STOS games to multi player. Remember,
start with a simple one and work your way up!

|

FAKE VIRUS DATA

(see page 12)

Bank number : 10 Length : 256

Adrs (bold numbers)| Datas (Check (italic
numbers) :

0G00 | 601A 0000 00BO *0016
6000 0016 8000 *0012 | 34/08
0034 | 41F9 0000 00BO 43F9
0000 0026 4E?5 23C8 | 0F905
0044 | 0000 000C 33FC 0BBS
0000 0010 3F3C 0002 | 07F0E
0054 | 4E4E S48F 23C0 0000
0012 4279 0000 0016 | 1093F
0064 | 2079 0000 0456 4A98

| 66FC 217C 0000 0074 | 0F853
0074 | FFFC 41F9 0000 0008
43F9 0000 0072 45F9 | 1ceeét
0084 | 0000 0005 47F9 0000
0006 4E?S5 4A79 0000 | 0EOF2
0094 | 0010 6B08 5379 0000
0010 4E?S 303A FF90 | 23CE0
00A4 | 207R FFBB 41F0 0000
7227 4298 S51C9 FFFC | 36876
0084 | 0640 DOAD BO?C 7DOO
6502 7000 33C0 0000 | 2301F
00C4 | 0016 4E?S *D0OD6 OOD1A
0608 0B0E 0610 0806 | [6AD7
00D8 | 0606 0808 2800 *0022
0000 0000 0000 0000 | /3630

STOS PD Library

Listed on the next page you’ll find a good
selection of interesting programs with
something for everyone. Eachsingle-sided
disc(SPD prefix) costs just£2 each—or£1
if you supply your own disc, and each
double-sided disc (DPD prefix) costs
£2.50. If you order three discs or more,
deduct 20p per disc (including the first
three). For example four single-sided discs
will cost £1.80 each —£7.20 in total.
STOS Paint is shareware: £3 goes to
the programmer (deduct £1 if you supply
your own disc). Each disc has a specially-
printed STOS Public Domain purple
sticker kindly produced free-of-charge by
Mandarin Software so your PD discs will
match therest of your STOS master discs.
Inmostcases the programs require you
to bootyour copy of STOS first— that way
you can have a good look at the listings.
Many of the Swedish demos are rather
lacking in documentation—some of the in-
structions are in Swedish! However you
should be able to work out how to play the

games.

Ring Sandra on to find
out about the latest public domain titles to
be added to the library.

If you have any programs which may
be suitable please send them along. You
can also get something back for your ef-
forts by making your submission share-
warc.

Send cheques, postal orders or stamps
to:

Sandra Sharkey,
Highfield,
Wigan

Public Domain Library

Choose from the following:

SPD1: Ist Serve Tennis — Wimbledon revisited
in this one-player against the computer tennis
game.
SPDZ STOS demo I-The first demo created for
use in shops —no great shakes but includes a nice
tune you can grab.
SPD3:STOS demo III-Shows off the Compiler,
Maestro and Sprites 600 using some excellent
sampled sound. You do not need the Maestro
extension to run this.
SPD4: STOS listings — All the programs and
routines from issues 4, 5 and 6
SPDS: New STOS upgrade: Update your copy
of STOS to version 2.5 so it works with TOS 1.6
and the new Atari STE. -
SPD6: Fun School II (2 discs) — See two pro-
grams from each of the three age groups (Under
6s, 6-8s and Over 8s). Two single-sided discs.
SPD7: Swedish I —Two games submitted in the
Swedish competition. Yatzy is a cleanly-de-
signed version of the dice game Yahtzee with a
good tune, and Virus is a flip screen maze game
in which you are a cute-looking alien searching
formissing 3.5" discs! Some great sprites for you
to grab.
SPD8: Swedish 2 — Fia is a version of Ludo
controlled with the mouse pointer — good fun for
kids. Mario is an infuriating platform game, and
Rushis a ‘shove-the-bricks’ the solve the puzzle.
SPD9I: Swedish 3 —Saga Castle is an ambitious
multi-screen platform game with lots of puzzles
to solve. Stratego is a simple war game.
SPD10: Swedish 4 — Frog Race is a complex
game in which you bet on a number of excel-
lently animated jumping frogs which race to-
wards the finishing line. Upstart is a nicely put
together shoot-"em-up.
SPD11: Swedish 5 — Acid Remix is a spruced-up
version of the old standard Snake game with
some clever sampled sound at the beginning.
SPD12: Give Us a Break— An excellent version
of the popular pub game based on DLT’s radio

ing multiple-choice questions with difficulty re-
lated to the value of the ball you choose.
SPD13: Home Finance— Quite a good financial
program.
SPD14: Samples 1 — A marvellous collection of
samples put together by Martin Walker, author of
a number of commercial C64 games including
Chameleon, Hunter’s Moon and Citadel. He also
did the music for Armalyte — and the samples
include effects used in some of these games plus
some newly-created ones.
SPD15: Samples 2 — A wide collection of useful
sounds for use in your games, recorded at 6Khz.
Includeslaser bolts, alarm, pulse, scream, warble,
wazrp, take-off and tinkle — 20 in all.
SPD16: Samples 3 — Eleven more samples in-
cluding alarms, docking, fountain, hum, shoot,
tanktrax, up/down, alarm and more.
SPD17: Typing Tutor — The winning entry in
Issue 4’s competition. Richard Gale’s excellent
program has 50+ exercises and a built-in typing
game.
SPD18: Hero— A STOSified version of the 8-bit
and VCS game from Activision. Fly round the
cavems in your Hoverpack, dropping bombs to
blow up walls.
SPD19: Orbit Il - An updated, compiled version
with sampled sound.
SPD20: Zoltar II-Shows what animprovement
can be made by adding sampled sound and com-
piling.
SPD21: New Atari User programs (Disc 1)— A
collection of listings from Peter Hickman’s STOS
Column, including Input Data and Output Data.
SPD22: Samples 6—Porsche Carrerra starting up
and assorted sound effects from Dave Lee Travis'
radio show (bugle, crash dive, train, revving etc)
SPD23: STOS Paint— A feature-packed art pro-
gram written by Ralph Effemey which loads as an
accessory so you can flip to it with ease. Aunique
feature allows you to paint with sprites from the
sprite bank. Also on the discis the source code for
SPD3 (requires Maestro extension and one meg
of memory). [Shareware: £5]
SPD24: Tome demo — Try out for yourself this
sophisticated multi-screen map editor with built-

show. Try to pot all the snooker balls by answer-

18

Public Domain Library

in machiné-code scrolling routine.

SPD25: Skystrike demo — Take to the skies in

Aaron’s action-packed Spitfire game.
. SPD26: PCP and Skidpan—The full-screen edi-
| or which dllows you to forget about line numbers
 and add labels and procedures to STOS. Includes

Skidpan-game.
[SPD27: Shipwreck — An educational program
iwhich asks maths questions as the intrepid ex-
Frploxer rows, skis, climbs mountains in a s’ Lift
tand more.

SPD28: Hot Dog Demo — A giant juicy hot dog’

flies over a scrolling landscape with scrolling -

message — from Peter Hickman using TOME.
SPD29: Raceway — The full version of the verti-
cally-scrolling carracing game featured in Issues
5/6. Requires 1IMb of ram. -

SPD30: Lines and Spirals — Two menu-driven
programs which draw pretty patterns on the screen.
SPD31: Kiki Dee cemo — A simple demo which
shows a picture of Kiki while playing a long
sample of one of her songs.

SPD32: Star Trek— A beautifully-presented demo
of the Next Generation series. Move the Trekified
pointer to one of the many miniaturised Vidi
digitised pictures and click to hear sampled speech
or sound effects from the program. The excellent
sounds can be grabbed to spruce up any SF-type
game.

SPD33: Fire + Xmas — A hypnotic demo set to
music, and a wide selection of Christmas tunes
with accompanying graphics.

SPD34: Soko—~A STOSified version of the puzzle
game you can buy for the Nintendo and Game-
boy. Thought-provoking fun for fans of Tetris
and others. . ,

DPD1: Xmas demo — A well-executed spoof of
the nativity story with good animation.

DPD2: Caves of Rigel — A well-designed game
converted from the Atari 8-bit commercial re-
lease on Atlantis Software by the original author,
Ralph Effemey. The disc also includes another
game from Ralph — A Froggy Day in London,
based on the classic arcade game Frogger.
DPD3: STOS demo II — The cycling demo you
may have seén at the shows which uses Ian

‘Waugh's attention-grabbing tunes from the Ac-
cessories disc.

DPD4: Fun Scfiool I demo —The full demo on
one double-sided disc (see SPD6).

DPDS5: Samples 2 — The same as the samples on
EPD15 but zecorded at a higher sampling rate:
12kHz instead of 6kHz.

DPD6: Samples 3 — Ditto for SPD16.

DPD7: Thunderbirds — An entertaining homage
to the cult TY show with amusing animated
sequences, great music and top class Maestro
samples.

DPD8: Phantom of the Opera— A superb music
demo which combines Vidi-digitised animated
clips from the video of the classic Iron Maiden
tune you heard in the last Lucozade ad.

DPD9: Samples 4 — Arrows, fire, neck twist (?),

" pain, leg sawn off, thunder (from Richard Gale)

DPD10: Samples 5 — Six scréams, laughs, phan-
tom, wolf, bats (from Richard Gale) - ’
DPD11: ST Wizard — Spiralling sprites casting
shadows on a checkerboard landscape, ascrolling
message and along sample of the Top of the Pops
theme tune — from the keyboard of Richard Gale.
Just great!

DPD12: Blood Money — A new version of An-
drew Webb’s adaptation of the theme music for
this classic ST/Amiga game with scrolling mes-
sage. 2.57TMb of music crammed into 350k by
using clever looping and repeat sequences — four
minutes of music in all.

DPD13: Kylie demo — Dance your heart outto a
Maestro sampled version of the complete Loco-
motion tune which loads in from disc in chunks,
uncompresses and plays away — clever machine-
code programming by Bobby Earl.

DPDi4: Batdance demo —The complete tune by
Prince with excellent graphics, created using
Bobby’s routine.

DPD15: Treasure Hunt —Hunt for treasure in this
clever educational coordinates game by Peter
Hickman.Includes excellent graphics and samypled
speech.

DPD16: Daze Aster — An involved adventure
game with Vidi-digitised pictures and sampled
sounds.

19

NEWS

A‘MOS amazes at Show

The Computer Shopper Show at Alexandra Pal-
ace at the end of November saw the first public
showing of AMOS — the version of STOS for the
Commodore Amiga.

Available in late February, AMOS contains
all the features which made STOS such a winner
—plus a whole host of new features. By pushing
the blitter chip to its limits Frangois Lionet has
managed to allow up to 440 sprites animating on
screen at once (though they will be very small)!

It will be possible, using a special PD pro-
gram, to insert an ST disc containing an Ascii
version of a STOS program into the Amiga drive
and read it into AMOS via a convert program —
to produce an almost instant AMOS game! Pro-
grams will, though, require minor modifications
to work properly in AMOS.

Cartoon fun

The latest version of Cartoon Capers was on
show at Allie Pallie — and very nice it looks too.
The game can be played by one or two players on
Jjoystick — and the specially written two-joystick
Toutine (written by Bobby Barl, author of STOS
Squasher) will be provided free with the pack-
age. The game features a full digitised version of
the famous Loony Tunes melody, exclusively
licenced by Mandarin from Warner Brothers.

Cartoon Capers' programmer, Simon Cook is
already working on the Amiga version using an
early developer's version of AMOS. The game
will go on sale in February for £19.95.

Musical package delayed
STOS Musician, Mandarin's newest STOS add-
on has been delayed until March. The package
will include a brand new muisc routine written
by Bobby Earl (again!). The clever routine pro-
duces higher quality sound out of the ST's noto-
tiously ill-respected sound chip.

STOS Musician will come with an icon-
driven music editor and more than 100 tunes —
and sell for just £14.95.

an

STOS games on sale -

Games Galore, a collection of STOS games was
released by Mandarin in November — and the
company is delighted with the response from
retailers and the public. The four games boot
straight from disc (STOS is not required) and
really show off the power of STOS.

Ifyouhave a double-sided drive you can click
on the Hlip icon to load the Basic, sprite and
music files stored on side two (single-sided disc
drive owners can send for a disc with the files).
This way you can see how the games were put
together, modify them if you wish, grab the
sprites or background graphics for use in your
own games — and also grab the music files —
Skate Tribe alone features 25 diffent tunes, and
every one is a veritable gem!

This is a package that's not to be missed: Four
great games for £19.95 — and all the other bene-
fits as well!

Video times

Visitors to the Computer Shopper Show also got
a glimpse of anothernew release from Mandarin.
STOS Vidi Digitiser consists of Rombo's ac-
claimed hardware, a STOS extension file which
adds a series of new commands to STOS, and a
special editor program written in STOS (of
course).

Using the package youlll be able to grab

- graphics in realtime from video or TV. Grab the

castle from Trap Door to produce a creepy title
page, grab the howling wolf from the Lamot
advert to introduce a werewolf game.)

Spruce up an educational program by adding
Winnie the Poohjumping up and down if your
child gets the right answers. Grab a running
character and load him into the sprite editor to
add some realistic movement into your games...
Al this is possible and more. Watch this space!.

STOS Video Digitiser should be on sale by
March for £99.95. If you already own Rombo's
Vidi Digitiser you will be able to obtain the
software from Mandarin Software in March (but

* get in contact now with your wish list of fea-

tures!)

