w B W
Newsletter

Issues 5 & 6 « STOS User Club

Welcome to a bumper
issue of the Newsletter!

Because of the long summer break we've decided
to putissues 5 and 6 into one big magazine that's
twice its normal size — and twice as useful to all
you STOS users.

There's exclusive information on a brand new
range of STOS products that will be released over
the next few months, a complete carraging game
with vertical scrolling, a greatly extended Public
Domain library, a listing for a full-screen editor
that allows you to do away with line numbers and
add labels and procedures, articles on using the
Midi port for music or head-to-head games, and
much more.

It's also time to resubscribe — and we've put
together a very special offer to thank you for your
support and to encourage you to carry on making
the most of STOS.

Send a £10 cheque for the next six issues and
you'll get a disc containing STOS Word —a full-
feature word processor which even allows you to
use icons in the text — perfect for letterhead
designs, signatures, and so on. You'll find more
" details in the special sheet which comes with this
issue.

It's at this point I'd like to say that I will be
stepping down from the editor's seat after this
issue because of other commitments. It's been a
fascinating year in which the Club has developed
in leaps and bounds. I've really enjoyed corre-
sponding with many of you and talking on the
phone — and I'll miss you all. Aaron Fothergill
will take over the STOS Hotline and editorship of

the Newsletter.
‘Pat

Now, on with the issue...

STOS in the mags

New Atari User has joined Atari ST User in
producing aregular section on STOS. The August
issue includes a program to dump sprite data as
text and an animated demo. The August issue of
Atari ST User includes a version of PacMan on
the cover disc to match up with an article inside by
STOS artist Dave McLachlan.

STOS book in November

This autumn will see the publication of Game
Maker's Manual: AtariST and STOS Basic by
Stephen Hill, author of the STOS manual. Pub-
lished by Sigma Press, and with a provisional
price of £11.95, the title will effectively take over
from where the manual left off — explaining
particular topics in greater depth and benefitting
from Stephen's further experience with the inner
workings of STOS gleaned over the last year. The
book will explain how to develop adventures,
platform games and other arcade games, and will
include full details of how to create extension files
and generate 3D graphics.

New releases for Xmas

The festive season will see the launch of anumber
of STOS products. STOS Musician consists of a
top-class music editor together with more than
200 attention-grabbing tunes. There's even a
jukebox program so you can hear them all.

STOS Games Pack contains four excellent
games, many being finalists in the recent Awards,
and STOS Vidi Digitiser allows you to grab
frames off a video in real time. See‘inside the
newsletter for more details.

More news on the back page and inside.

LETTERS

STOP THE MUSIC

T've recently joined your excellent STOS club
and on reading the newsletters it appears that I
know of a bug which hasn’t come to light yet —
MUSIC FREEZE.

T've written a simple two player dogfight
game which has music playing in the back-
ground. I wanted to SHOOT and BOOM ma-
chine guns so:

MUSIC FREEZE : SHOOT : MUSIC ON

... seemed the logical way to do it! Yeuch!! Try
it!! The note playing when MUSIC FREEZE is
hit continues to play (i.e. itholds), the SHOOT is
ignored and then the tune continues. Any ideas?
David Russell, Leicester,

You must wait for the SHOOT sound to finish
before restarting the music. For example:

MUSIC FREEZE : SHOOT : WAIT 50 :
MUSIC ON

This is necessary because STOS produces the
SHOOT effect during interrupts and not in a
queue list.

MAESTRO MODS

Thave a problem with STOS Maestro. I am using
the sampler as mentioned in ST/Amiga Format
and the only way I can use it is to sample using
the sampler program on the disk supplied with
the magazine and save it to disk and then load it
into Maestro. This is because Maestro samples
through the cartridge port whereas the ST/Amiga
Formatsampler samples through the printer port.

Isitpossible to change the program to accom-
modatethis oris there a way of getting ormaking
an adapter to use it in the ca
tridge port?

Any light on ,
this subject\¢
would be grate-
fully received.
R. Rose,

It would be very difficult to make these changes
as the printer port operates in a different way —
it’s also slower to access than the cartridge port.
I'm afraid yow'll have to carry on as you are or
buy the Maestro Plus upgrade.

HINTS & TIPS COMPILED

I bought STOS mainly for its advanced BASIC
features — I have no ambitions to write games!
Despite this I have learned to appreciate what a
comprehensive and well-documented product
STOS is.

T also appreciate your newsletters — each new
issue contains more hints and tips about STOS.
The trouble with all this information is that the
more there is, the harderitis to find: When you hit
a problem you remember reading about it but it
seems to take ages to locate.

In an attempt to solve this problem I wrote a
program (in STOS Basic of course) which allows
me to store all these hints and tips on disc. It gives
me the capability to hold up to 500 such tips, each
with up to three IDs (words such as SPRITE,
PROGRAM, FIX or anything you like) with a
brief description and the issue and page number
so that it can be easily located.

The tips can be added, modified or deleted.
They can be displayed on screen and saved when
the exit routine in taken. Once saved the tips can
be reloaded when the program is next used.

I wonder whether the program would be of
any interest to you? There’s nothing fancy about
it (itis in Basic after all). Idid put some sound into
it—but this did get a bit tiresome —so I made the
sound optional.

One thing I didn’t manage to do was to getrid
of the STOS menu at the top of the screen —is this
possible?

Alan Constable, Maidstone, Kent.

It's adoddle to get rid of the menu —simply type

KEY OFF.I'msure lots of memberswill be inter-
ested in your handy database — perhaps inter-
ested parties could send to you for the latest
version (with disc and SAE of course) — Pat

LETTERS

MOVING ARROWS

I am having a couple of problems with STOS:
1.Tam having trouble manipulating a sprite with
the joystick and changing the sprite according to
the direction the joystick is moved. An example
of what T am trying to achieve is moving an arrow
around the screen with the arrow pointing in the
direction it is moving.

2. I cannot get a map I have made on the map
definer into STOS Basic.

James Turner, Middx,

To get the sprite to change with the joystick
directionuse avariable to store the sprite number
and change the value when you move the sprite.
For example:

10 rem Sprites+joystick routine (needs a
sprite bank loaded)

20 X=160 : Y=100 : SPN=1

30 rem Sprite 1=left,2=right,3=up,4=down
40 sprite 1,X,Y,SPN : update

50 if jleft then dec X : SPN=1

55 if jright then inc X : SPN=2

60 if jup then dec Y:SPN=3

65 if jdown then inc Y:SPN=4

70 goto 40

The MAP files created with the STOS map
editor can only be loaded into the editor itself or
by using the BLOAD instruction. To use a map
generated by the map editor use the SAVE.ASC
option to generate therequired section of code to
add to your program. You then load up your
program and doa LOAD “MYMAP ASC" to add
the lines to your program (they start at 50000).
There arefullinstructions for this onthe accesso-
ries disc (MAP.DOC). However the STOS map
editor system can only handle maps generated
with sprites, it can't handle scrolling maps like in
Gauntlet etc. and it is very slow. It is good for
designing backdrops for multiple level games
wherethe background is only made up of a limited
number of sprites and doesn’t have to move. —
Aaron.

HELLO WORLD

Thanks again for your help on the phone yester-
day with STOS. (Sue is producing a disc maga-
zine called SYNTAX and was having difficulty
with producing .PRG files — Pat)

AfterIcameoff1did anew disk, dragging over
the STOS folder, did your “TEST.PRG” of ‘hello’
(10 print “hello” 20 goto 10) and it worked
perfectly. Great! Tried again with my program
and though I didn’t get a TOS 35 error or two
bombs, after about 30 seconds it dropped back to
the desktop.

Iresaved my program again calling it“test.prg”
and it worked so all I can think is that the name I
was using “syntax1.prg” is the problem. Perhaps
SYNTAX is arestricted word?

Sue Medley, Kent,

The problem you experienced was due to a prob-
lem with STOSCOPY which is now resolved. See
Newsletter Issue 1 or write to Mandarin.

ON THE FLY

One feature that seems to be missing from STOS
Basicis the ability to evaluate expressions (mathe-
matical equations) that are entered while a pro-
gram is running. The old Atari 8-bit Basic had its
‘Return key’ mode and Fast Basic (like BBC
Basic) has an EVAL command. I have tried
various dodges to simulate this but to no avail. Is
there anyone out there in the STOSiverse that has
cracked this one?

Also, hands up all those who have pressed F4
instead of F5 and overwritten the very file they
wereloading! A ‘file already exists’ prompt would
have been nice. L AR
Caryl Jones, Sussex,

I suggest you change
the CONFIG program
50 you can't use F4.
The following ~
EVAL routine works by
stuffing the formula into the
key buffer using PUT KEY ™
along with “: GOTO line”

LETTERS

anda “‘“toactas aRETURN keypress. Another
way would be to write a line with the formula to
disc as an ASC file, then load it into the program.
Both of these methods will only work with an
interpreted program.

5A=1:B=2

10 line input “Enter Your Formula :”;F$
20 clear key

30 put key “C="+F$+":goto 50'”

40 end

50 print “The Result is “;C

MIDI MAGIC

T am amusic teacher and would like to make are-
quest concerning that area. How about some
articles on using MIDI with STOS programs?

Alternately could you provide info via the
newsletter on books that would be of use in this
area for a not too experienced programmer?
Leigh Marriott, Portland Australia.

Your wish is our command. See the articles on
MIDI later on in this Newsletter.

BOOK SEARCH

My knowledge of Basic is a bit limited (VIC 20
Basic part 1 & 2, Spectrum 30 hour) and I read
these some five years ago. Could you suggest a
title that would help?

Try Alcock’s Illustrated Basic (Cambridge Uni-
versity Press) as suggested in the STOS manual.

HELPING HAND

I would like to help try and sort out some of the
many problems experienced by fellow STOS
users. I am a computer operator by trade but I
have a BTEC National Certificate in computer
studies and have been programming for about six
years. I have a fairly broad knowledge of com-
puters and high level languages but very little
experience of low level languages or hardware.
Dorking, Surrey,

I'm sure that a number of readers would like to
take you up on this offer.

HIDDEN COMMAND

The reference card (first page) mentions a com-
mand under “Variable and string commands”
which I cannot find in the manual. This is listed
as:

=INPUT list/” chars” ,delay

‘What does this mean? Or is it a misprint?
Martin Taylor,

This produced some red faces at

Mandarin —it's a misprint!

LONGER MENU NAMES

Is it possible to use LINE INPUT # with separa-
tors other than ‘ENTER’?

Another question: Is there any poke pill or
potion that would allow me to make a menu
option (title) more than twenty characters long?
This may seem unlikely but I can think of a use
(I won’t go into it just now).

I wonder if Mandarin will pull their fingers
out and produce a new version of the manual.
Depressed of Banbury! .
The answer to your first two questions is a
straight ‘No’. Mandarin have no plans to rewrite
the manual at the moment. It is far from perfect,
but a damned sight better than other manuals I
can think of!

EXTENDING STOS

T have a few questions and suggestions for im-
provement of the STOS package.

First the inclusion of recursive procedures
would greatly improve the lan- ’
guage (please Mandarin!). :

When using machine
coded additionsThavefound _J§
that unless cleared from g
memory after use an er- g,
ror occurs (even with gl

LETTERS

code that runs perfectly by itself). Can anyone
help?

Also is it possible to add my own machine
code routines to the language as an Extension
file?

As long as the machine code is in a bank you
should have no problems. See Stephen Hill's new
book for detailed information.

FUN WITH FUN SCHOOL

First of all thanks for a brilliant newsletter — the
last issue was better than ever. Having been a
newsletter editor myself, I feel for you with re-
gard to receiving articles from members. I have
finally had pangs of guilt and decided to write, if
nothing else I getinto “the 5%” who have written
.

Thaveworked on acoupleof simple programs:
A disc label printer, a maths program for my son,
flashcards for my younger daughter, using the
zoom example onpage 143 of the manual, (which,
incidently, has a bug... change the end of line 70
to :Y2=Y1+16). These are some of my ‘better’
products. I intend to provide you with listings in
the near future.

The only ‘disadvantage’ with the STOS
Compiler is that once a program has been com-
piled to a GEM run.prg, it cannot be listed using
STOS. This prevents examining and changing the
program, which we have probably all done to
ZOLTAR etc. In fact, I bought the Fun School 2
pack, which is written in STOS, and I really
enjoyed pulling the various programs to pieces to
see how they worked (on backups of course). The
author of Fun School 2 has included many rem
statements explaining how the program func-
tions. Reading these statements is an excellent
way to learn STOS. If the program had been
compiled, I could not do it. I hope that future
programmers (particularly educational software)
do not compile, because adapting the software to
your own child’s ability is a real benefit.

Larry Green Decimomannu
PS:My 9 year old son, would like a pen-pal STOS

user of similar age, any takers?

I can see your point that you can't list PRG files
created by the Compiler — but you can't call it a
disadvantage as that's exactly what you want the
Compiler to do!

SPRITES IN A SPIN

I need some help with STOS. How do you get
sprites to go round in a circle. I can not even think
of where to start so please could you help me ? I
have enclosed a disk so if you have an answer I
would be thankful if you could place it on the disk.
Ihave got all the new packages to do with STOS
e.g STOS compiler and yet again Mandarin have
done it, they’re Ace!

Daniel Bates, Selsey

The sprite now circles! The program
ORBITER BAS I've sent you works by using the
same sort of routines that you would have to use
to draw circles without the CIRCLE command.
Thevariables CX & CY contain the centrex,y co-
ordinates of the circle, and RX,RY arethe X & Y
radii of the circle (or ellipse). The program then
uses the variable Q# to count from 0 to 2pi (there
are 2piradiansinacircle). The point on the edge
of the circle at Q#radians is calculated by:

X=CX+Cos(Q#)*RX Y=CY+Sin(Q#)*RY
so the command.:

sprite 1,CX+cos(Q#)*RX,CY
+sin(Q#)*RY,1

..would put sprite #1 on the edge of the circle at
Q# radians. You can use this routine for drawing
circular objects as well as making sprites go
round and round, and by changing bits in the
formula you can generate quite a few weird
effects! I hope the program solves the problem.
Have Fun! — Aaron

MUSIC EXTENSIONS
I think that the bargain of the year must be buying
STOS Games Creator. It’s Brilliant!

One thing that T haven’t been able to work out

LETTERS

yetishow to use the MIDI out port. Although the
manual is quite comprehensive, it does not give
you any examples of MIDIing. Input is enabled
using the PORT(n) instruction.

If the programmers of STOS (or anyone else
for that matter) are looking for ideas to improve
their product, I have one. It is to do with the
Music Definer. Instead of just having voices 1,2
and 3 playing from the Atari’s sound chip, have
channels 4,5,6 (or more) going out to a MIDI
device. Playing the background music and the
sound chip doing the explosions. Perhaps even
one of the channels could be reserved for the
Maestro Sampler. I hope this doesn’t sound too
complicated.

Also will anyone be doing a review of the
sampler and the compiler?

Daniel Shaw, Guemsey

(See the article about Midi this issue). Maestro
wasreviewed inIssue4.The compiler is brilliant
and Maestroisn’'t quite perfect but it does the job
for sound effects and sampling sections of music
and isfar better than any other ST sampler I have
tried. Its only drawback is the fact that a stored
sample can only be played back at either afixed
rate from 5-32Khz in 1Khz steps or in steps of a
semi-tone over 1 octave, so you can’t do fine
shifts of the sample’s pitch like pitch bend on a
synth. Otherwise it is damn good quality for an 8-
bit sampier. — Aaron

BUGGY PATTERN

Adam Parker Rhodes of Muswell Hill phoned
the Helpline with a strange problem with STOS.
He was trying to use the SET PATTERN com-
mand to define his own fill pattern for a program.
However all he got were Atari Symbols! Also he
asked how to do graphics and multiple sprites
without getting flicker from sprites overwriting
each other.

The good news is that you are completely sane
and didn’t type the program in wrong! The bad
news is that having tested the SET PATTERN
routines myself and found them somewhat lack-
ing inthe area of doing things.I phoned Richard
Vanner at Mandarin. According to him the SET

PATTERN commandwill only work in high reso-
lution due to someone forgetting to finish it! (So
fileitaway with allthe Trap #4 and #6 commands
unless you are using High res!).

To help fix your other problem with the flick-
ering sprites, here is a suitable screenflip routine
(feel free to change line numbers and bank num-
bers to suit.).

10 reserve as screen 5 :rem Reserve a
screen for the background {non
changing) graphics.)
20 logic=5:autoback off: rem We are now
working on the screen in bank 5
30 rem Draw or load in your background
here
40 logic=back : rem From now on we are
doing all the graphics out of sight on the
background screen and then screen
swapping them into view

(whenever you want to update the screen do a

gosub 100)
100 rem Do screen update
105 screen copy 5 to back
110 rem Do sprites and graphics here
120 update : rem This fixes the sprites
(and mouse) in position for a frame
130 screen swap : wait vbl : rem Make
the background screen visible and wait
one update to make sure there Is no
flicker
140 retum

This tends to cure 99% of all known sprite
flicker problems although you need 32k of extra
memory for the background screen as you are
effectively working on three screens instead of
the usual two. Remember that the screen you are
working on is not the one in view, as this may
cause confusion if the program ends or is stopped
while Logic=Back. Anything you type will ap-
pear out of sight on the background screen. Just
enter logic=physic or logic=default logic to get
backto normal (or UNDO twice). Have fun, and
good luck with the program.— Aaron |

ARTICLE

Everything you wanted

to Kknow about PACK

... but were afraid to ask!

Frangois Lionet explains how his clever
screen compacting routine works

Packing a screen in STOS is made simple by
using the COMPACT accessory. But how does
this program manage to crunch whole or even
sections of screens using the PACK command?
Well this article explains all, giving the tech-
niques used and revealing hidden parameters of
PACK.

The PACK command

The full and true syntax of the PACK command
is:

pic_length = PACK picture, destination [reso-
lution, flags,height of block, start inx, start iny,
size of x, size of y]

pictureis the address of the screen to be PACKED,
a bank number can be used or an absolute ad-
dress.

destination is where the new compacted screen
will be stored: Either bank number or absolute
address may be used.

The instruction can work with just these two
parameters. If this is the case then the whole
picture will be packed, the other parameters will
be setup by STOS.

The extra parameters mean the following:

resolution tells STOS which mode the picture
has been drawn in. You can use a different num-
ber if you wish but the saving of space won’t be
as much as the true resolution.
. flags This sets informatior about the colour pal-
ette.
Bit 0:If on, the whole colour palette will be set
to zero before the picture is unpacked, thus

giving a clean display. If this bit is clear then
the palette is not altered, this is useful when un-
packing to a bank.

Bit 1: When on, the palette will be changed to
that of the screen to be unpacked. The palette
is not altered when this bit is clear.

The default for the two bits is 1 & 1. This
default is used when you only specify the two
parameter version of PACK.

height of block We'll cover this later, suffice to
say at this point that it sets the packing block size
in Y lines.
start in x states the top left x co-ordinate from
where the picture will be packed. The value must
be given in the number of words - for low resolu-
tion, 0 would be the far left, 10 in the middle and
19 the far right.
start in y states the top y co-ordinate of the
picture.
size of x indicates how many WORDS across
from the start x will be packed (width).

size of y must state the number of packing -
squares in Y to process. The full length of the
picture area to pack is therefore square size * size
iny.

If you wishtouse this extended form of PACK
youmust be certain to set all 9 parameters other-
wise STOS will just throw it back at you.

When set up and called, PACK retumns the
size of the newly created and crunched up picture
to the appropriate variable, in this casepic_length.

A packing process _
Compacting can be achieved in a number of
ways, the simplest is described here.

Imagine an empty screen, consisting of32000
bytes, each set to zero. A simple compactor will
pack this screen into two numbers: 32000 and 0.
Youcan see that the unpack program willhave no:
problem to recreate the original screen! Here are

ARTICLE

two STOS Basic routines which will PACK and
UNPACK ascreenusing the technique thatT have
just described for the empty screen.

*PACKing routine (not testing for the end of
picture) ORIGIN=picture address DEST=packed
picture address

100 CPT=0 : B1=peek(ORIGIN) : inc
ORIGIN : poke DEST,B1 : inc DEST
110 B2=peek(ORIGIN) : inc ORIGIN : if
B2=B1 then inc CPT : if CPT<255

then 110

120 poke DEST,CPT : inc DEST :

goto 100

*UNPACKing routine ORIGIN=packed picture
address DEST=address of screen for unpacking
to

200 b=peek(ORIGIN) : inc ORIGIN :
CPT=peek(ORIGIN) : inc ORIGIN 210 for
X=0 to CPT+1 220 poke DEST,B : inc
DEST 230 next X 240 goto 200

This would work perfectly for our empty pic-
ture but imagine a screen filled alternately by 0,
255, 0, 255... Packing this picture with such a
technique would be catastrophic! Theresult would
be twice the size of the original picture. I therefore
chose a process of compaction which was far
more intelligent for STOS.

STOS’s compacting method

For each byte of the screen we’ll have a single
corresponding bit within an index table. As the
size of the picture is 32000 bytes, there will be
32000 bits within the table — that is 4000 bytes.
We also need to build another table — the bytes
table.

‘When the compacting begins, it starts off by
examining the bytes from the original picture
systematically. If the current byte examined is
different from the previous one (or if it is the first
byte)itsets the corresponding bit within the index
table to 1 and stores the current byte into the bytes
table. If the current byte is equal to the previously
examined byte then the compactor simply sets the
appropriate bit in the index to 0.

How does the unpacking process work?

It first reads the current bit in the index. If it is set,
itwillread abyte from the bytes table, if itisn’tset
it uses the previous value. The retrieved byte is
then poked into the picture and the loop-starts
again, looking along the index until itreaches the
last bit.

Let’s see an example:

Original Picture: $00 $FF $FF $FF $0A $0A $0A $01

would produce:
Index table (in binary): %11001001
Bytes table $00 $FF $0A $01

The main advantage of this method is that it
won’t double the size of a picture. In the worst
case possible it would produce a screen with an
index 4000 bytes in size and a bytes table, 32000
bytes long. This would only occur if every byte in
sequence changed in the original screen. Some
pictures do have complex designs but it is very
rare for a screennot to compactsuccessfully using
the above technique.

Using this method to pack a blank screen we
would get a bytes table consisting of just one byte,
but an enormous 4000 byte index table, beginning
with the firstbit set and the rest set to zeros. In this
case the method has reduced the picture data to
nothing but I end up with an ugly overhead with
the index. This is very bad — packing a blank
screen into 4k — I would be ashamed of selling
such a routine. '

The solution? Yes, of course: Pack the index
table! After packing this table we'll get another
index table, which will be 4000 / 8 = 500 bytes
long. That’s more like it! And another bytes table
which will vary on the complexity of the picture.
For our blank picture it would just be 2 bytes long:
$80 and $00. So the final size of the compacted
blank screen would be: 500 +2 +1=503 bytes (for
232000 byte picture).

Onemay ask, can we pack the first bytes table?
The answer is no, because each byte is different,
thus the compaction would make the file bigger.

Can.we pack the second index table? Yes, I

ARTICLE

tried, and there is no advantage, it just slows
down the process rather than helping save mem-
ory.

The UNPACKing program must first rebuild
the first index table using the second generation
index table and bytes(1) table. It thenrebuilds the
actual picture using the unpacked index and
bytes(1) table.

Still trying to grab memory?
The Atari’s screen is divided up into bit planes.
The STOS compactor accessory explores mem-
ory plane by plane, So it will loop four times in
mode 0, twice in mode 1 and once in mode 2.

Imagine a screen with a vertical line on an
empty background.

Our firstmethod of compacting would be line
by line, taking the first byte on the left, then the
next one, until the right hand byte is reached.
This continues down the screen for each line.
Now, because there is a line in the middle of the
screen, each line will generate atleast three bytes
for the bytes table: $00 for the left of the screen,
$01 (for example) for the line, and $00 again for
the right hand side of the screen. It will therefore
create 200 * 3 = 600 bytes.

The second method involves exploring the
screen by small blocks. Starting with the first
byte of line 1, then the first byte of line 2...up to
the last line of the block. Then we

Let’s say that the height of our squares is 200
lines. The bytes table would then be:
$00 all blocks from left to vertical line
$01 Block that contains the line
$00 Right hand side of picture

As you can see, only three bytes long!

For amore complex picture the COMPACT.ACB
accessory tries various block sizes: normal (line
by line), 2, 4, 8, 16 and 32. The height of block
parameter in the PACK instruction contains the
the size in Y of blocks (1 being line by line). For
ahorizontal line on an empty screen, line by line
would be the best procedure.

A packed picture header

The header of a packed picture (saved using the
“Save Binary File” within COMPACT.ACB) is
detailed in the table below.

Well friends, I hope you did not fall asleep
reading this article—I'm feeling alittle tired my-
self! Nextissue, we'll see how to make an inter-
preter extension like COMPACT.EXA. Bye for
now, I've got to get back to AMOS! -

come back to the top of the screen to | Offset Size ~ Value Designation
the second block along. Whenawhole | 0 L $06071963 ILD. code (my birth date!)
line of blocks have been explored the| 4 W 0/172 Resolution mode
routine jumps down to the next line, 6 W X start of picture (in words)
and so on until the whole screen has | 8 W Y start of picture (in lines)
been covered. 10 W X size (words)
12 W Number of blocks
14 W — Unused —
Block size = 4 16 W Y size of squares (line)
Istbyte | Sthbyte 8 W Flags
2nd byte [6th byte... 20 L Offset to bytes(2) table
3rd byte | 7th byte 24 L Offset to index(2) table
Athbyte | 8thbyte 28 W.W.W Colour palette
70 Start of bytes(1) table
SeCf)nc% line of bloeks, B - Start of index('Z_)-taEa —
begianing atline 5 T T T T T T Smotym@ ahe |

LISTING

RL
Aaron Fothergill shows you how to create
more structured programs

This month’s special offer is a program to enable

you to use procedures with STOS. It will also

enable you to convert programs from GFA Ba-

sic, ST (very) Basic or basically any other Basic.

However the conversion features are (hopefully)
. going to be ready for the next Newsletter.

The first listing enables you to edit a STOS
program using labels and procedures instead of
line numbers. You can load in a STOS program
in ASC format, edit it and save it in either ASC
or PCP (a custom file type for this program, so
you can save the program with the labels). When
loaded in ASC format the line numbers are re-
moved (although the ones within the line aren’t,
so any GOTO or GOSUB statements will have to
be re-worked. I'm working on making the pro-
gram assign labels to these automatically. You
can also type in your program from scratch. The
only other option on the menu at the moment is
“Convert”. Click on this and the PCP (Pre-editor
Converter Program) will convert the labels and
procedures to linenumbers and save the program
as an ASC file. All you have to do now is type:

new
load “MYPROG.ASC”

...watch it type in your program and then type
run.

Syntax and such

In this version of the program Labels and Proce-
dures are exactly the same. To declare a Label or
Procedure, put the command:

LABEL mylabel. or PROCEDURE mylabel.

...at the start of the line. mylabel can be any

length of text as long as it doesn’tinclude quotes
or full stops. Itmust end with a full stophowever.
Any references to that labe] are done as just the
label name with the full stop, for example:

Print “This is my program in PCP”
A=1
LABEL loop. Print A
inc A
If A<11 then goto loop.
gosub thisline.
gosub thatline.
input a$
on val(a$) gosub thisline.thatline.
end
PROCEDURE thisline. Print “This is a a pro
cedurel”
return
PROCEDURE thatline. Print “Just like that!”
: return

Note thatmultiple command lines are allowed
as normal. For future compatibility, any routines
you wantto call with parameters, define using the
PROCEDURE command, as.I will be adding
routines to enable you to pass parameters to a
procedure justlike inothermore structured Basics
(The ones thatcan’t do good old spaghetti code!).

Future updates to this program (all through
the Newsletter) will include the ability to com-
pletely re-define all the STOS commands with
alternate syntax. This will enable you to convert
Basic programs from other ST Basics or even
from other computer Basics! This is good news
since I’ve just been given a VIC 20 and I've got
loads of my old (very old!) Basic programs hid-
den away for it somewhere! Another update will
be the ability to create Subroutine Libraries to
save you having to type in the same bits of code
for each program. You just select what ones you
want from the library and add them to your
program. Please phone or write with any ideas for
bits youmight want on the program. (The press-

11

LISTING

one-button-and-it-writes-a-program-for-yourou-

tine is on its way!).

Now for the difficult bit — the typing in!
Alternatively you can send £2 (or aformatted disc
and£1) to Sandra (see page 34) ans she will send
you PCP and all the other listings from this
bumper issue — and anything else she can lay her

hands on.

12 rem * STOS Basic Pre-edit

13 rem * Converter Program

14 rem * Aaron Fothergill

15 rem * Shadow Software 89

16 rem * For STOS User Club

17 rem * Newsletter .

18 rem *

19 rem ARRRRARAARAR RN AR ARAR

20 dim L$(1000),L.2$(1000),LBL$(50),
LBL(50),ERJ(20) : rem Change this for
big programs over 1000 lines or 50
labels

21 dim T$(3) : T$0)="." : T$(1)="0" :
T$(2)="0" : T$(3)="0"

25 L$(0)="rem Created with PCP”

30 mode 1 : key off

40 A=1

41 B=1 : read M$: if M$="" then 50

42 menu$ (A)=MS$: repeat : read M$: if
M$=""then inc A : B=99 else menu$
(A,B)=M$:inc B

43 until B>10 : if B=99 then 41

45 data “ FILE “,”Load .ASC”,”Load
.PCP”,’Save .ASC”,”Save .PCP”
,"Quit”,””,” CONVERT “,”Convert
Program”,””,”PRINT”,” Print
Listing™,””,™”

50 ND=1 : menu on

55 on menu goto 500,600,700

56 on menu on

60 if ND=1 then gosub 100)
61 K$="": K=0 : while K$="" and K=0 :
K=mouse key : K$=inkey$: wend

62 if K=1 then locate xtext(x
mouse),ylext(y mouse)

63 if K$<>"" then gosub 110 : goto 60
99 goto 61

100 rem Display lines

101 Y=ycurs : X=xcurs : A=0: VL=0:
repeat : locate 0,VL

102 print
mid$(L$(A+LT)+space$(80),1,80); : inc A
:inc VL : until VL>22

103 ND=0 : locate X,Y : return

110 rem Edit a line (Line length up to
max string length or end of memory!)
111 K2$=K$: X=xcurs : Y=ycurs : P=X+1
: L$=mid$(L$(ycurs+LT)+
space$(80),1,max(80,len(L$(ycurs+LT))))
112 LP=1

115 locate XY : K$=K2$: K2$="" : K=0 :
while K$="" and K=0 : K$=inkey$:
K=mouse key : wend

116 if K=1 then X=xtext(x mouse) : locate
X,Y : P=LP+X : goto 115

117 if K=2 or K$=chr$(13) then gosub
220 : L$(LT+Y)=LS$: X=0 : locate 0,Y :
print mid$(L$+space$(80),1,80); : gosub
185 : X=0 : return

125 if asc(K$)=0 then gosub 200 : rem
Special Controls

130 if K$=chr$(8) then mid$(L$,P-
1,len(mid$(L$,P)))=mid$(L$,P) :
L$=mid$(L$,1,len(L$)-1) : gosub 170 :
locate 0,Y : print
mid$(L$+space$(80),LP,80); : locate X,Y
131 if K$=chr$(127) then
mid$(LS$,P,len(mid$(LS$,P+1)))=mid$(L$,P+1)
: L$=mid$(L$,1,len(L$)-1) : locate 0,Y :
print mid$(L$+space$(80), LP,80); :
locate XY : K$=""

135 if asc(K$)<32 then K$="" : rem It's a
control character, ignore it (or add in
your routine here)

139 if K$="" then 115

140 if LT+Y=0 then bell : return

150 if MDE=1 then 160 : rem insert mode
151 if P<=len(L$) then
mid$(LS,LP+X,1)=K$ else
L$=mid$(L$+space$(80),1,P) :
mid$(L$,P,1)=K$

152 locate X,Y : print K$;

153 inc P : inc X : if X>79 then X=79

154 if X=79 then LP=P-79 : locate 0,Y :
print mid$(L$+space$(80),LP,80);

155 goto 115

160 L$=mid$(L$,1,P-1)+K$+mid$(LS,P) :
locate X,Y : print mid$(L$,P,80-xcurs);
161 goto 153

170 rem move 1 place left

171 dec P : dec X : if X<0 then LP=P :
X=0 : locate 0,Y : print
mid$(L$+space$(80),LP,80);

172 if P<1 then P=1: LP=1 : X=0

173 return

175 rem move 1 place right

176 inc P : inc X : if X>79 then X=79

177 if P>len(L$) then

LISTING

12

=mid$(L$+space$(80),1,P)
178 if X=79 then LP=P-79 : locate 0,Y :
print mid$(L$+space$(80),LP,80);
179 retum
180 rem Move up a line
181 S=0:dec Y : if Y<0 then Y=0 : dec
LT : S=1 ¢ if LT<0 then LT=0 : bell : S=0
182 if S=1 then locate 0,Y : scroll down :
locate 0,Y : print .
mid${L$(LT)+space$(80),1,80);
183 locate X,Y : L§=mid$(L$(Y+LT)+
space$(80),1,max(80,len(L$(Y+LT)))) :
return
185 rem Move down a line

Keep going — you’re nearly there!

186 S=0:inc Y : if Y>22 then Y=22 : inc
LT : S=1:if LT+22>1000

then dec LT : bell : S=0

187 if S=1 then locate 0,Y : scroll up :
locate 0,Y : print
mid$(L$(LT+Y)+space$(80),1,80);

188 locate X,Y : L$=mId$(L$(Y+LT)+
space$(80),1,max(80,len(L$(Y+LT)))) :
return

200 rem Special keys

201 bell : A=scancode

202 if A=75 then gosub 170

203 if A=77 then gosub 175

204 if A=82 then MDE=1-MDE : set curs
4-MDE*3,5+MDE*3

205 if A=72 then gosub 220 :
L$(LT+Y)=LS$: locate 0,Y : print
mid$(L$+space$(80),1,80); : gosub 180
206 if A=80 then gosub 220 :
L$(LT+Y)=L$: locate 0,Y : print
mid$(L$+space$(80),1,80); : gosub 185
219 return

220 rem Remove extra spaces from end
of line

221 if right$(L$,1)=" “ then
L$=mid$({L$,1,len(L$)-1) : goto221

222 retum

500 rem Do File menu

501 on mnselect gosub
505,580,550,570,530

502 goto 55

505 rem Load .ASC file and strip off the
line numbers.

510 F$=file select$(“*.ASC”,”Pick an
ASC file”,1) : if F$="” then return

511 gosub 535)

515 open in #1,F$: L=1 : while eof(#1)=0

520 line input #1,L$(L)

521 if mid$(L$(L),1,1)=" “ then
L$(L)=mid$(L$(L),2) : goto 521

522 L$(L)=mid$(L$(L),instr(L$(L),” “)) :
inc L : wend

525 close #1

526 ND=1 : return

Save it now just in case !

530 end

535 A=1 : repeat : L$(A)="": L2§(A)="":
inc A : until A=1001 : return

550 rem Save .ASC file with line
numbers (start on 10, increment by 5)
551 F$=file select$(“*.ASC”,”Save as
.ASC”1) : if F$="" then return

552 ML=1001 : repeat : dec ML : until
L$(ML)<>""

553 open out #1,F$: L=0 : while L<=ML
554 L$=L$(L) : if
upper$(mid$(L$,1,9))="PROCEDURE”
then LS=instr(L$,”.”)

: L$=mid$(L$,LS+1)

555 if upper$(mid$(L$,1,5))="LABEL”
then LS=instr(L$,”.”) :
L$=mid$(L$,LS+1)

556 print #1,str$(L*5+10)+” “+L$

557 inc L : wend

558 close #1

559 ND=1

560 return

Almost finished !

570 rem Save .PCP file with labels

571 F$=file select$(“*.PCP”,”Save as
.PCP”,1) : if F$="" then return

572 ML=1001 : repeat : dec ML : until
L$(ML)<>""

573 open out #1,F$: L=1 : while L<=ML
574 L$=L$(L)

576 print #1,L.$

577 inc L : wend

578 close #1

579 ND=1 : return

580 rem Load .PCP file

581 F$=file select$(“*.PCP”,”Pick a
.PCP file”,1) : if F$="" then return

582 gosub 535

585 open in #1,F$: L=1 : while eof(#1)=0
586 line input #1,L$(L)

587 inc L : wend

588 close #1

13

LISTING

589 ND=1 : return
Complex bit coming up !

600 ND=1 : cls : print “Converting Labels
to Line numbers”

601 NLBL=0 : NER=0 : ML=1001 : repeat :
dec ML : until L$(ML)<>""

602 print “Pass 1 (Finding Labels)” : A=0
: repeat : if
upper$(mid$(L$(A),1,5))="LABEL” then
LS=instr(L$(A),"”.”) : FS=6 : gosub 650
603 if
upper$(mid$(L$(A),1,9))="PROCEDURE”
then LS=instr(L$(A),”.”) : FS=10 : gosub
650

605 inc A : until A>SML

606 L2§(A)=LS

610 print “Pass 2 (Replacing Label
references with line numbers .)”

611 A=0 : repeat : L$=L$(A) : L=0 : while
L<NLBL : NI=1

612 if instr(L$,LBL$(L),NI) then gosub
660 : goto 612

613 inc L : wend : L2$(A)=LS :inc A : lo-
cate 70,0 : print A;” “: locate 79,0 : print
T$(TGL) : inc TGL : TGL=TGL mod 4 :
until A>ML

620 print “Pass 3 (Save it to disk as an
.ASC file)”

621 F$=file select$(“*.ASC”,”Save as
.ASC",1) : if F$="" then return

622 open out #1,F$: L=0 : while L<=ML :
Ls=L2$(L)

623 if
upper$(mid$(Ls$,1,9))="PROCEDURE”
then LS=instr(L$,”.”) : L$=mid$(L$,LS+1)
624 if upper$(mid$(L$,1,5))="LABEL”
then LS=instr(L$,”.") : LS$=mid$(L$,LS+1)
625 if mid$(L$,1,1)=" “ then
L$=mid$(L$,2) : goto 625

627 if L$<>"" then print #1,str$(L*5+10)+"
“+L$

628 inc L : wend

629 close #1 : ND=1 : goto 55

649 return

650 rem Sort out label/procedure hame
651 LBL$=mid$(L$(A),FS,LS-FS+1)

652 if mid$(LBL$,1,1)=" “ then
LBL$=mid$(LBLS,2) : goto 652

653 if LBL$="." or LBL$="" then print
“Label naming error in line “;A :
ERJ(NER)=A : bell : wait key

654 LBL$(NLBL)=LBLS : LBL(NLBL)=A :

inc NLBL : return

660 rem replace label with line number
661 if NI=1 and
upper$(mid$(L$,1,5))="LABEL” then
Ni=instr(L$,”.”)+1: return

662 if Ni=1 and
upper$(mid$(L$,1,9))="PROCEDURE”
then Ni=instr(L$,”.”)+1: return

663 rem Check for parity of quotes
(Stops renaming stuff in strings!)

664 Q$=chr$(34) : QC=0 : Q=1 : repeat : if
mid$(L$,Q,1)=Q$ then inc QC

665 inc Q : until Q>=instr(L$,LBLS$(L)) : if
QC/2*2<>QC then Ni=instr(L$,LBL$(L))+1
: return

666 I=instr(L$,LBLS$(L)) : L$=mid$(L$,1,l-
1)+str$(10+LBL(L)*5)
+mid$(L$,l+len(LBL$(L))) : return

669 return

700 rem Print listing

701 ML=1001 : repeat : dec ML : until
Ls(ML)=l7)l

702 A=0:repeat : Iprint L$(A) : inc A :
until A>ML

703 goto 55

Well done! Go and make a cup of teal”

Using MIDI

And now for something for those people who

have been trying to use MIDI with STOS. The

program below is designed to allow two STs to
communicate via MIDI's System Exclusive
commands. Before going into detail on the pro-
gram itself I shall clear up a few things about

MIDIL

» MIDI isn’t purely for musical communication.
Itis basically just another communications line,
like the RS232.

» The MIDI standard is a set of rules for anything
that wants to use MIDI to communicate. This
includes the wiring of the leads and what data
you are supposed to send. If you only want to
communicate between two or more computers,
then as long as you have the leads correctly
wired, you can completely ignore the MIDI
standard control codes.

« STOS’s MIDI control is based on a file system.
This is not the best system to use, but it does
work as long as you are careful with your pro-

LISTING

14

gramming.

The first thing you must do if you are using
MIDI commands with STOS is to open a channe]
for the data. This is done using the Open
#chan,”MIDI”: command. This channel number
has nothing at all to do with MIDI Channel
numbers — it is just the data charnel that STOS
assigns. Tusually use 3 (as 3 is the number of the
MIDI line for all the ST’s BDOS,BIOS and
XBIOS routines). Once the line is opened, you
can use print # statements to send data out, or the
=port(#) function to receive data. Each MIDI
byte is represented as 1 character when out-
puting, and the =port function will return 1 byte,
or a-1if there is no data present. When outputing
MIDI data using print # make-sure you use a
semicolon at the end of the print, otherwise STOS
will send areturn character and character 20, thus
messing up your output to your synth or com-
puter. So use:

print #3,mo§$;
instead of:
print #3,mo$

To input MIDI data you use the =Port(#)
function. This pulls the next MIDI byte off the
data buffer and retumns it. It also returns a -1 if
there is nothing there. So to wait for an incoming
byte, you must constantly check the buffer for
data, all the time storing the data in a variable. A
while...wend loop is best for this, for example:

1=-1 : While I<0:I=port(#3): wend

This loop will exit with the data byte in the
variable I. Obviously for longer messages you
mustuse this loop more than once. Youmay also
want to use a timer on the loop to exit if there is
no data within a given time. For example:

=-1:timer=0:while I<0 and
timer<500:I=port(#3):wend

This will exit with I set at -1 if it takes too long to
get the byte, thus saving the computer from lock-

ing up if there is no incoming data. At the start of
your program, or before sending request mes-
sages to synthesisers for data (see next issue), itis
a good idea to clear the input buffer of rubbish.
This, again, is easily achieved by using a
while..,wend loop.

1=0:while 1>=0:I=port(#3):wend

The program below uses a special variation of
this routine. It clears any useless data until it
comes to the welcome message that the other ST
has sent. This tells the computer that the other ST
is on line and waiting to communicate. The other
ST does the same of course. To use, type in the
program and copy it across to a second ST which
should be connected MIDI Out ST1 to MIDI In
ST?2 and MIDI Out ST2 to MIDI In ST1. Make
sure the program is typed in correctly on both
machines and run it. If you have made a mistake
in the program, or the connection is incorrect,
delete the rem on line 25, run the program and put
the rem back. This completely clears the MIDI
line, to make sure there are no spare welcome
messages floating around. When both ST’s have
started talking to each other, you will get a wel-
comemessage from the other ST and then you can
enter amessage to send to it. Enter your message
and press Return. You will then see the message
that was sent to you. You ‘continue entering
messages until you get bored, at which point enter
QUIT (or quit) to log off. Your ST will inform the
otherthatyouhave logged off, and both programs
will stop. This program actually uses MIDI Sys-
tem Exclusive commands to send the data. This
means that if you happen to have a synthesiser
still connected to either ST when you use the
program, it will happily ignore it, as I have used
the Fairlight ID code for the message. (If you
happento have aFairlight CMI then (a) make sure
itisn’t connected and (b) phone me, because I'm
desperately in need of a job!) The format for a
system exclusive message is as follows:

$FO This is the System Exclusive com-
mand
$nn Manufacturers ID code (we are using

$14). Thismakes sure thatonly a synth

LISTING

from the specified manufacturer will
take any notice of the data.

Your data Depending upon whatyou are sending

the data to, it can be almost anything.
However all the data bytes (and the
Manufacturers ID must be in therange
0-127, as the MIDI data format reads
anything 128-255 as acommand (more
next issue). For this program the data
is your message

SF7 This is the EOX byte (End Of eXclu-

sive) that tells the receiving instru-
ment that the system exclusive mes-
sage is over.

10 rem MIDI Communication between
two ST’s

15 WELC$="Hello from another ST |”

20 open #3,”MIDI” : rem Open the MIDI
Line

25 rem gosub 300:end : rem Remove the
rem to clear the line of welcome data
from bugged attempts at this program .
30 gosub 200 : rem Clear the line of
garbage and send Welcome message

40 line input “Enter Message :";M$

43 if upper$(M$)="QUIT” then M$="Other
user has logged off”

45 for A=1 to len(M$) :

mid$(M$ A, 1)=chr§{min(127,asc(mid$(M$ A,1)))
: next A : rem Make sure no bytes are
above 127

50
MOS$=chr$($F0)+chr$($14)+M$+chr$($F7)
: rem Add (MIDI System Exclusive)+
(Fairlight 1.D !)+message+(EOX End Of
eXclusive) data

60 gosub 100 : rem Send it

65 if M$="Other user has logged off”
then end

70 gosub 150 : rem Get data from other
computer

80 M$=mid$(MI$,3,len(MI$)-3) : rem
Remove header and EOX data

90 print M$

93 if M$="Other user has logged off”
then end

95 goto 40

99 close #3 : end

100 rem Send MIDI Message

105 print #3,MOS$;

110 returmn

150 rem Get MIDI Message (terminated
by EOX Character)

155 I=-1 : timer=0 : while 1<0 : I=port(#3)
: wend

160.if 1<0 then print “Nothing On Line “ :
close #3 : end

165 Mi$=chr$(l)

170 I=-1 : while 1<0 : I=port(#3) : wend
175 if 1<0 then print “MIDI Line Error 1" :
close #3 : end

180 Mi$=MI$+chr$(l) : if 1<>$F7 then 170
: rem Check for EOX Character If not
then get another byte

185 retum

200 rem Send welcome message, clear
the line and wait for incoming welcome
205 MO$=chr$($F0)+chr$($14)
+WELC$+chr$($F7) : gosub 100 : rem
Send welcome

'210 1=0 : while [>=0 and 1<>$F0 :
I=port(#3) : wend : if I<0

and mid$(Mi$,3,len(MI$)-3)<>WELCS
then 210

211 If 1=$F0 then gosub 250 : rem Check
for welcome message

212 if 1>=0 then 210

213 return

250 MI$=chr$($F0) : rem Check for wel-
come message)

251 |=-1 ; timer=0 : while I<0 and
timer<200 : I=port(#3) : wend

252 if 1<0 then 1=0 : return : rem Not the
welcome message so keep checking
253 MI$=MI$+chr$(l)

254 if 1=247 then 260

255 goto 251

260 if mid$(Mi$,3,len(MI$)-3)=WELC$
then print WELCS : I=-1 : return

261 I=1 : return

300 rem Clear line without welcome (Do
this when line has garbage on it

due to bad programs)

301 1=0 : while I>=0 : I=port(#3) : wend :
return

Have fun with this program and feel free to
modifyit. You canuse a similarsystem in a game
to link two ST’s together for multi-player games
(Battleships is the best one to start on). It is
possible to use more than two ST’s together in a
network (see my Jitterbugs game on the ST
Amiga format cover disc) although this requires
slightly trickierroutines (They mightberevealed

LISTING

16

in a couple of issues time!).

Scrolling Text

To answer therequest for a scrolling textroutine,
here is a small program written with PCP (Just to
get you to type PCP in!) that will scroll your
message horizontally across the screen in large
letters.

rem created with PCP

rem >

rem *

rem * Message Scroller Program

rem * Written in PCP STOS by

rem * Aaron Fothergill

rem * Shadow Software 1989

rem*

rem

mode 1 : key off : line input “Enter your
Message “;MESS$: MES$=MES$+” “ :
rem Enter a message and stick a space
on the end

mode 0 : key off : curs off : hide on :
click off : rem Set to low resolution

auto back off : reserve as screen 5 :
logic=5 : wait vbl : ink 0 : bar 0,0 to
319,199 : rem Reserve ourselves a
screen and clear it

paper 0 : pen 1 : RTE=4 : rem Set the
text colours and scroll rate

locate 0,0 : logic=5 : print left$(MES$,10)
: MES$=mid$(MESS$,11)+left$(MESS$,10) :
rem Put the text on screen 5§

walit vbl : zoom 5,0,0,80,8 to
back,0,64,319,127 : logic=back :
to 80,8 : walit vbl : screen copy
back,0,64,320,128 to physic,0,64 : rem
Zoom the text onto the main screen

LABEL loop1. SCR=0 : logic=back : rem
When SCR gets to 64 it's time to draw
the next letter

LABEL loop2. logic=back : screen swap :
walit vbl : screen copy back,RTE,64,
320,128 to back,0,64 : bar 320-RTE,64
to 319,128 : rem Scroll the text and
blank the end _

SCR=SCR+RTE : If SCR<64 then loop2. :

bar 0,0

rem | know repeat...until Is nicer, but
I’m testing PCP

rem Draw the next
letter A

back=5 :

St — L —

wait vbl : locate 0,0 : print left$(MESS$,1) :
MES$=mid$(MES$,2)+left$(MESS$,1) :

back=default back : rem Print next
character on our screen and scroll the
characters

zoom 5,0,0,8,8 to back,288,64,319,127 :
rem Zoom It to the background screen

screen copy back,0,64,320,128 to
physic,0,64 : rem Copy it to the physi-
cal screen

goto loop1.: rem Go back and scroll it
forever !

Note in PCP you can enter as many characters
as you want on one line. In the above program
only start a new line when the line actually starts
at the left of the page, the indented bits are to be
typed as part of the same line. A simpler way of
scrolling textis to store the textin a string and then
to stick one end of the string on the other end. For
example:

MESS$="This is a message over 20
characters long that will scroll

LABEL loop. MES$=mid$(MESS$,2)
+left$(MESS,1)

locate 0,10:centre mid$(MES$,20) goto
loop.

This will scroll the letters left in the centre of
the screen. To change the number of characters to
be seen at a time, just change the 20 in the centre
mid$ bit. To make the text scroll to the right, use
the line:

LABEL loop. MES$=right$(MESS,1)
+left$(MESS,len(MESS$)-1)

Experiment with these routines and see what
you can come up with. It’s an easy way to do an
intro to autility (as ituses very little memory) and
you could try doing multiple messages scrolling
in different directions. (The best so far has been
24 lines of text scrolling in alternate direc-
tions!).

Now in the STOS User Club
— library is ademo of TOME (TOtal
) Map Editor) a little ma-
chine code routine of

17

LISTING

mine that allows you to do Gauntlet-style map-
ping games athigh speed. The demo disk contains
ademo version of the editor (which times out after
10 minutes and doesn’t let you save maps) and a
small demo program incorporating two-level
parallax scrolling. You can use TOME in your
own programs, and it will soon be available as a
STOS extension file. The demo disk doesn't let
you use TOME in your programs, but it lets you
get a good idea of what it can do! Here are some
of its features:

» High Speed Map Drawing and scrolling

« 240 tiles per tile screen

- multiple tile screens useable

« very efficient map data system. You can store a
map the size of 240 ST screens within 64k!

+ Easy to edit maps with the TOME Map Editor
(Includes Cut and Paste and Locator functions).

+ TOME also works with Hi-res (not perfect yet,
but getting there!) To get the Demo send a disk
and handling fee to Pat Winstanley at the STOS
user group. If you want an early versionof TOME,
details are on the demo disk of how to obtain it.
Although I suggest you wait a month until I've
perfected it and put the STOS version of Jitter-
bugs on the disk (that’s the one on ST Amiga
Format #9). The STOS version of Jitterbugs is
going to be somewhat improved over the original
GFA basicversion (STOS can handle the routines:
better so it will be faster, have more varied aliens,
bigger maps, more traps and much much more!)
Coming soon: Language converter update for
PCP and Invisible Galaxians (ha ha).

If you need help with your STOS program-
ming or know any good jokes, ring me on 0271
816037 anytime after 1pm and before 7pm (this
number may change from October 1), or write to
me (or Adam Fothergill who is the artwork ex-
pert) at ournew address: Barnstaple, North Devon

preferably with alarge order and blank cheque for
our programs, but we do answer questions and
provide help for free. Please include an SAE if at
all possible. |

10-LINERS

Missile Command comes to STOS in just 10
lines with BLOCKER! In this excellent little
game by the ubiquitous Aaron (look it up!)
your lawn on Tau Ceti 3 is being attacked by
Stringy stuff. Ward it off with a super-duper
aerosol controlled with the mouse, but use it
wisely as itruns out with overuse. On the later
levels a fog will come down, but you can
disperse this with the spray.

You will need sprites for your gardener.
Use ALIENS5.MBK from STOS Sprites 600
or use six animations of a circular flying
saucer (or six movements of the same sprite).

10 mode 0 : key off : click off : curs off :
dim MX(20),MY(20),MXO{(20),MYO{20) :
LVL=1 : DEAD=0 : SCRE=0 : change
mouse 4

20 X=hunt(start(1) to start(1)+length(1),
"PALT”)+4 :for A=0 to 15 : colour
A,deek(X) : X=X+2 : next A : repeat : ink
0+LVL/5 : bar 0,0 to 319,199 : ink 8 : for
A=0 to 319 : draw A,199 to A,180-rnd(20)
:next A : for A=0 to LVL : MX(A)=160-
rnd(100)+rnd(100) : MY(A)=0 :
MXO(A)=MX(A) : MYO(A)=0 : next A :
colour 4,237

30 NM=LVL : BNX=0 : AMMO=50+LVL*30
: timer=0 : while timer<1000+LVL*500 :
X=x mouse : Y=y mouse : K=mouse key
: for A=0 to NM : if DEAD=0 then ink 1+A
mod 7 : draw MXO(A),MYO(A) to
MX(A),MY(A) : MXO(A)=MX(A) :
MYO(A)=MY(A) : if point(MX(A),MY(A)
+1)=8 then ink 0 : epie MX(A),MY(A),20
+LVL,20+LVL*4,0,3600 : MX(A)=160+
rnd(140)-rnd(140) : MY(A)=0 :
MXO(A)=MX(A) : MYO(A)=0 :
SCRE=SCRE+LVL*10 : boom

40 MX(A)=max(0,min(MX(A)+rnd(4)-
rnd(4),319)) : MY(A)=MY(A)+LVL/4+1 : if
MY(A)>199 then DEAD=1 : timer=9999 :
A=99 : boom

50 next A : if K and AMMO>0 then dec
AMMO : ink 8 : pie X,Y,10,0,3600 : shoot

(continued on page 22)

RACE WAY

18

Writing a complete
game using STOS

Ralph Effemey, author of STOS Paint, Arthur of
the Britons and various public domain games
shows you how to create a game from scratch.

Everyone who has used STOS will, by now, have
realised how easy it is to write games to commer-
cial standard. “It’s not easy!”, did you say? Of
course it is — and over the next few issues I'm
going to show you how.

Scrolling seems to be one of the sticking points
for alotofyousolet’s jump in at the deep end and
write a game that uses vertical scrolling (this
being smoother than horizontal scrolling). I don’t
know about you, but personally I'm fed up with
the usual ‘shoot-’em-up’-type games, so why not
troduce an element of stick control and not just
fast reaction on the fire button.

T’ll call the game Race Way —you’ve guessed
it, it’s a rally/race game. The aim is to drive your
car over a series of sections ranging from forest,
through mountain and desert sections and finish-
ing in a town. You have a number of laps (I've
used eight) per section and your running time and
score is displayed at the end of each section with
your total score displayed at the end of the game.
The game also takes into account the number of
crashes, deducting points for each crash, elimi-
nating you if you have too many.

So — on with the program. Using Dégas,
Neochrome or STOS Paint you need to draw an
opening title screen and 20 track screens (five
screens per section) but at this stage you can make

them as simple as you like. The track which the
car runs on must be drawn in colour 13. Every-
thing else (trees, kerbs, houses etc) must be
drawn in any colour other than colour 13 —you’ll
see why later. You will also need to design your
car in five positions as sprites 1 to 5 and an
explosion as sprites 6 to 9 (see the illustrations
below). These are my designs, but you can use
any design you like as long as they are no bigger
and the hot spot is in the same place. Finally, the
game scrolls approximately two thirds of the
screen while the remaining right hand third re-
mains static—this is where your score, lap counter
and time are displayed. These figures are dis-
played using windows and must be at the posi-
tions indicated.

As each section comprises five screens, all the
screens you design for that section must link up
i.e. screen one must join screen two and so on.
That way, when you scroll, you will not see the
join.

The short program below will help you create
a section of five screens. It will draw the first
straight for you, then you take over and finish the
first course by holding down the left mouse
button and drawing in the normal way or moving
the pointer to anew pcsition and then pressing the
left mouse button to draw a straight line to the
new position. Do not draw a track that is more
than 45 degrees away from the vertical in either
direction. When you have finished the track,
press the right mouse button and both the track

" Hot spots to be in the centre one
plxel Iine above the sprite Jmage

i @@e@@ 008

Hot spots for the explosionmust be in
the centre of the sprite

19

RACE WAY

and surrounding area will fill in. (This will only
work if your pointer is right at the bottom of the
screen.)

You can then add ‘trees’ (polymarkers) if you
so desire. Pressing the right button will exit to the
save screen window. I suggest you name your
tracks TRACK1.PI1, TRACK2.PI2 and so on.
On the final screen you will see two small points
at the bottom. You must join your track to these
points to enable a smooth scroll with no join!

After five tracks, quit the program and start
again at TRACK6.PI1 and so on, and continue
until you have drawn all 20 tracks. Then use the
compact accessory to compact the pictures ready
for the game itself.

10 rem o SCREEN DESIGNER
20 rem ***+weox BY RALPH EFFEMEY
30 rem *** EVERYTHING OFF!

40 key off : mode 0 : curs off : flash off :
reserve as screen 6

50 gosub 230

60 X1=85 : X2=85 : ink 13 : set paint
1,1,1 : TRACK=1 : colour 13,$555

70 rem ******* DRAW ROAD

80 if TRACK=1 then for I=1 to 130 : plot
X1,Y1 : plot X1435,Y1 : Y1=Y1+1 : next |
90 if mouse key=1 then X2=x mouse :
Y2=y mouse : draw X1,Y1 to X2,Y2 :
draw X1+3

5,Y1 to X2+35,Y2 : X1=X2: Y1=Y2

100 if mouse key=2 and Y1=199 then
bell : ink 13 : paint X2+10,Y2 : ink 5 :
pain

11,1 : paint 224,198 : goto 130

110 goto 90

120 rem ******* DRAW ‘TREES’

130 ink 7 : set mark 3,39

140 if mouse key=1 then polymark x
mouse,y mouse

150 if mouse key=2 then goto 170

160 goto 140

170 rem *****+xxx SAVE SCREEN

180 hide on : screen copy physic to 6 :
show on

190 F$=file select$(“*.PI1”,”
AS DEGAS SCREEN”)

200 if F$=""" then screen copy 6 to
physic : screen copy 6 to back : show
on : end

210 if right$(F$,3)<>"PI1" then goto 190

SAVE

220 save F$,6 : inc TRACK : Y1=0:Y2=0
: cls physic : cis back : gosub 230 : in
k13 : goto 90

230 paper 13 : ink 13 : bar 227,0 to
319,199 : ink 5 : draw 225,0 to 225,199 : p
en 1 : bar 235,150 to 311,191

240 locate 30,3 : print “SCORE” : locate
30,7 : print “LAPS” : locate 30,11 : pr

int “TIME” : paper 5 : locate 32,20 : print
“RACE” : locate 33,21 : print “WAY”

: if TRACK=5 then ink 13 : plot 85,199 :
plot 120,199

250 return

The game itself is listed below. You will need a
title screen whichyoumust save inbank 6 and you
willneed to design your own car as also discussed
above and load this into the sprite bank.

Now for the Jisting explanations:

Lines 10-110setup the title screen, windows and
50 on, initialise the variables and numerous other
house-keeping duties.
Lines 120 -230 s the main loop which checks the
joystick, scrolls the screen via a sub-routine at
line 240, detects collisions and counts the crashes.
As mentioned, the scroll routine starts at line
240 and thanks must go to Richard Varmer for
these lines of code as they allow a scrolling screen
and moving sprites!
Lines 290 - 330 moves a new car onto the track
after a crash. This sub-routine simply checks for
the colour of the track. If the new car has reached
the track then the FOR..NEXT loop is termi-
nated. The car is then moved 10 pixels further to
the right to ensure the car is in the middle of the
track.
Lines 340 - 360 checks the number of laps com-
pleted. If I=0 then increment the track variable
(TR) and load in the next set of tracks.
Lines 370-440 is the end game screen which
shows youyour current time, score and the fastest
time so far.
Lines 450 - 560 produce what I call the ‘earth-
quake’ effect. Rather than just have the car ex-
plode, Ithoughtitwould be nice tohave the whole
track shake as well. This routine does just that. It
might be simple, but it works!

RACE WAY

20

Lines 570 - 590 checks the number of crashes.
I’vechosen 12 -you can change this by re-setting
the value of CR in line 70 and 220. You might
like tointroduce a difficulty factor by altering the
number of crashes you canreceive before having
to retire. Make CR player variable.

The remainder of the code simply loads the
four track sequences in tumn. Now for some of the
most important variables:

SC = Score

TT = Number of tracks

CR = Number of crashes

FIT = Fastest overall time (The 100000 in line
20 is dummy value)

SP = Speed

U = Vertical position of car

X = Horizontal position of car

L = Number of laps (change this if you like)

You will notice that in lines 720, 840 and 960
I've named each section. You can, of course,
change this to suit your own design of track.

This is really quite a simple game but it uses
alot of STOS features, especially the scrolling
effect. I hope you find it useful and I'm sure you
can improve on it. Try using STOS Paint to
produce your screens. It’s miles better than the
utility I provide above.

Try adding other sprites, maybe tanks or
planes that try and shoot you off the road. The
possibilities are endless.

If you don’t compact the screens you might
not be able to get them all onto a single-sided
disc. If you use a double-sided disc and don’t
want to be bothered with packing and unpacking
your screens then simply remove all UNPACK
commands. Youcanfind these withthe SEARCH
command.

10 fade 3 : wait 21 : mode 0 : flash off:
scroll off : curs off : key off : hide on :
screen copy 6 to physic : screen copy 6
to back : for I=10 to 15 : erase | : next | :
get palette (6) : wait key : windopen
4,3,5,24,1,0,3

20 gosub 600 : screen copy 10 to physic
: screen copy 10 to back : get palette

(10) : SC=0 : SP=0 : FTT=100000 :
volume 16 : click off

30 Y=1 : X1=0 : X2=225 : logic=back :
U=130 : S=10 : X=95 : paper 14 : pen 1 :
limit sprite 0,0 to 225,200

40 windopen 1,30,2,5,1,0,3 : curs off :
scroll off

50 windopen 2,30,4,5,1,0,3 : curs off :
scroll off

60 windopen 3,30,6,7,1,0,3 : curs off :
scroll off

70 SC=0: TT=0 : TR=0 : CR=0

80 get palette (10) : qwindow 1 : print SC
: logic=physic : screen swap : print SC
logic=back : screen swap

90 L=6 : qwindow 2 : print L :
logic=physic : screen swap : print L :
logic=back\: screen swap

100 qwindow 3 : print TT/50 :
logic=physic : screen swap : print TT/50
: logic=back.: screen swap

110 gosub 250 : sprite 1,X,U,1 : gosub
250 : timer=0 : SP=0

120 rem FRRAAAR MA‘N LOOP RARRRRARRARK
130 gosub 240

140 sprite 1,X,U,1

150 if jright then X=X+(SP/2) : sprite
1,X,U,2

160 if jleft then X=X~(SP/2) : sprite
1,X,U,3

170 if jup and jright then X=X-(SP/4) :
sprite 1,X,U,4

180 if jup and jleft then X=X+(SP/4) :
sprite 1,X,U,5

190 if fire then inc SP : if SP>20 then
SP=20

200 if jdown then dec SP : if SP<2 then
SP=2

210 C=0 : C=detect(1) : if C<>13 then
boom : gosub 460 : sprite 1,-100,-100,1 :
gosub 250 : gosub 300

220 if CR>12 then goto 580

230 goto 130

240 rem ARRRAK SCROLL ARARERK

250 volume 16 : noise 1 : envel 12,48-SP
: Y=Y+SP/2 : if Y>200 then Y=1:inc S :
screen copy S,0,0,225,200 to 10,0,0 : if
S>14 then S=10 : gosub 350

260 screen copy S+1,X1,200-Y,X2,200 to
logic,0,0

270 screen copy S,X1,0,X2,200-Y to
logic,0,Y

280 redraw : screen swap : wait vbl :
return

290 rem ******* MOVE CAR ONTO

21

RACE WAY

TRACK **#xx

300 sprite 1,-100,U,1 : SP=0 : gosub 250
310 gosub 250 : inc CR : logic=physic :
screen swap : screen copy physic to
back : for I=0 to 240 : walt 1 : sprite
1,L,U,1 : C=0 : C=detect(1) : if C=13 then
=240

320 next |

330 C=0 : for J=x sprite(1) to x

sprite(1)+10 : inc J : X=J : sprite 1,X,U,1 :

wait 2 : next J : sprite 1,X,U,1 :
logic=back : screen swap : return

340 rem ****** CHECK LAPS COM-
PLE"ED WRRRRARK

350 volume 0 : bell : dec L : qwindow 2 :
print L;” “ : logic=physic : screen swap :
print L;” “ : logic=back : screen swap : if
L=0 then inc TR : on TR goto
680,800,920,380

360 return

370 rem ***** END GAME SCREEN
ARRRRRRRRANKR

380 SC=10000-(timer/10) : SC=SC-
(CR*50) : CR=0 : TT=timer

390 qwindow 1 : print SC : logic=physic :

screen swap : print SC : logic=back :
screen swap
400 qwindow 3 : print TT/50 :

logic=physic : screen swap : print TT/50 :

logic=back : screen swap : if HS<SC
then HS=SC

410 screen copy 6 to back : screen copy
6 to physic : logic=physic : screen swap
i if TT<FTT then FTT=TT

420 windopen 6,5,5,22,7,1,1 : curs off :
scroll off : print “ HIGH score=";HS :
print “ YOUR score=";SC : print
“FASTEST TIME=";FTT/50;”” : cdown :
print “ Any key to go” : sprite 1,100,100
430 wait key : clear key : windel 6 :
screen copy 6 to back : screen copy 6 to
physic : forI=10 to 15 : erase | : next| :
gosub 600 : fade 3 : wait 21 : screen
copy 10 to physic : screen copy 10 to
back : logic=back : screen swap : get
palette (15)

440 pop : goto 70

450 rem ****** ‘EARTHQUAKE’ SCREEN
ARARARRRR

460 redraw : screen swap : sprite 1,x
sprite(1),U,6 : wait 1

470 redraw : screen swap : sprite 1,x
sprite(1),U,7 : wait 2

480 redraw : screen swap : sprite 1,x
sprite(1),U,8 : wait 3

490 redraw : screen swap : sprite 1,x
sprite(1),U,9 : wait 4

500 redraw : screen swap : sprite 1,x
sprite(1),U,8 : wait 5

510 redraw : screen swap : sprite 1,x
sprite(1),U,7 : wait 6

520 redraw : screen swap : sprite 1,x
sprite(1),U,7 : wait 6

530 redraw : screen swap : sprite 1,x
sprite(1),U,6 : wait 7

540 redraw : screen swap : sprite 1,x
sprite(1),U,6 : wait 7

550 redraw : screen swap : sprite 1,x
sprite(1),U,6 : wait 7

560 return

570 rem ****** TOO MANY CRASHES
SCREEN ***+

580 boom : logic=physic : screen swap :
windopen 5,3,5,24,2,0,3 : curs off : scroll
off : print “* TOO MANY CRASHES!!” :
print “Any key to go again...”

590 wait key : fade 3 : wait 21 : windel 5 :
windel 3 : windel 2 : windel 1 : for =10 to
15 : erase | : next | : screen copy 6 to
back : screen copy 6 to physic : goto 20
600 rem **** LOAD FIRST TRACK ******
610 logic=physic : screen swap : curs off
: scroll off : qwindow 4 : print “LOADING
1st SECTION”

620 reserve as datascreen 10 : reserve
as datascreen 15 : load “track1.mbk”,5 :
unpack 5,10 : unpack 5,15

630 reserve as datascreen 11 : load
“track2.mbk”,5 : unpack 5,11

640 reserve as datascreen 12 : load
“track3.mbk”,5 : unpack 5,12

650 reserve as datascreen 13-: load
“track4.mbk”,5 : unpack 5,13

660 reserve as datascreen 14 : load
“track5.mbk”,5 : unpack 5,14

670 return

680 rem *** LOAD SECOND TRACK
*RARAR

690 SC=10000-(timer/10) : SC=SC-
(CR*50) : CR=0 : TT=timer

700 qwindow 1 : print SC : logic=physic :
screen swap : print SC ; logic=back :
screen swap

710 qwindow 3 : print TT/50 :
logic=physic : screen swap : print TT/50 :
logic=back : screen swap

720 logic=physic : screen swap :
qwindow 4 : curs off : scroll off : print
“Loading MOUNTAIN section”

730 for I=10to 15 : erase | : next ! :

RACE WAY

22

reserve as datascreen 10 : load
“track6.mbk”,5 : unpack 5,10

740 reserve as datascreen 11 : load
“track7.mbk”,5 : unpack 5,11

750 reserve as datascreen 12 : load
“track8.mbk”,5 : unpack 5,12

760 reserve as datascreen 13 : load
“track9.mbk”,5 : unpack 5,13

770 reserve as datascreen 14 : load
“track10.mbk”,5 : unpack 5,14

780 reserve as datascreen 15 : load
“track6.mbk”,5 : unpack 5,15

790 fade 3 : wait 21 : timer=TT : goto 80
800 rem **** LOAD THIRD TRACK ****»
810 SC=10000-(timer/10) : SC=SC-
(CR*50) : CR=0 : TT=timer

820 qwindow 1 : print SC : logic=physic
: screen swap : print SC : logic=back :
screen swap

830 qwindow 3 : print TT/50 :
logic=physic : screen swap : print TT/50
: logic=back : screen swap

840 logic=physic : screen swap :
qwindow 4 : curs off : scroll off : print
“Loading DESERT section”

850 for =10 to 15 : erase | : next | :
reserve as datascreen 10 : load
“track11.mbk”,5 : unpack 5,10

860 reserve as datascreen 11 : load
“track12.mbk”,5 : unpack 5,11

870 reserve as datascreen 12 : load
“track13.mbk”,5 : unpack 5,12

880 reserve as datascreen 13 : load
“track14.mbk”,5 : unpack 5,13

890 reserve as datascreen 14 : load
“track15.mbk”,5 : unpack 5,14

900 reserve as datascreen 15 : load
“track11.mbk”,5 : unpack 5,15

910 timer=TT : goto 80

920 rem **** LOAD FOURTH TRACK
930 SC=10000-(timer/10) : SC=SC-
(CR*50) : CR=0 : TT=timer

940 qwindow 1 : print SC : logic=physic
: screen swap : print SC : logic=back :
screen swap

950 qwindow 3 : print TT/50 :
logic=physic : screen swap : print TT/50
: logic=back : screen swap

960 logic=physic : screen swap :
qwindow 4 : curs off : scroll off : print
“Loading TOWN section”

970 for I=10 to 15 : erase | : next|:
reserve as datascreen 10 : load
“track16.mbk”,5 : unpack 5,10

980 reserve as datascreen 11 : load

“track17.mbk”,5 : unpack 5,11

990 reserve as datascreen 12 : load
“track18.mbk”,5 : unpack 5,12

1000 reserve as datascreen 13 : load
“track19.mbk”,5 : unpack 5,13

1010 reserve as datascreen 14 : load
“track20.mbk”,5 : unpack 5,14

1020 reserve as datascreen 15 : load
“track16.mbk”,5 : unpack 5,15

1030 timer=TT : goto 80

(BLOCKER continued...)

60 if BNX>0 and BNX<339 then sprite
2,BNX,BNY,BNS : update : inc BNS :
BNS=1+(BNS-1) mod 6 : BNX=BNX+4 : if
detect(2)=8 then SCRE=SCRE+200 :
volume 15 : for A=90 to 5 step-1 : play
A,0 : next A : timer=timer+100 : Ink 0 :
pie BNX,BNY,40,0,3600 : BNX=0 :
volume 16 : envel 9,1000 : sprite 2,999,1
70 if (BNX=0 or BNX>339) and
rnd(100)=1 then BNX=1 :
BNY=rnd(20)+20 : BNS=1

80 if LVL>4 and NM<LVL+4 then
S=rnd(NM) : inc NM : MX(NM)=MX(S) :
MXO(NM)=MXO(S)

: MY(NM)=MY(S) : MYO({NM)=MYO(S)
90 wend : if DEAD=0 theninc LVL : -
SCRE=SCRE+1000*LVL:: locate 0,10 :
paper 5 : pen 1 : centre “LEVEL
“+str$(LVL) : locate 0,12 : centre “Hit
Anything” : while inkey$=""" and mouse
key=0 : wend
100 until DEAD=1 : paper 0 : ciw : locate
0,10 : paper 0 : pen 8 : centre “GAME
OVER” : paper 1 : pen 5 : locate 0,12 :
centre “You scored “+str$(SCRE) : while

| inkey$="": wend : run

The senders of the best 10-liner game and
the best 10-liner routine or non-game will
eachreceive a copy of the two disc version of
Skystrike Plus. For the purpose of this com-
petition, you cannot use machine code and
you cannot call an external file greater than
10k in length.

Please ensure that you include an SAE if
you want your disc returned — we'll send it

back cramnmed other goodies! u '

23

NEWS

The STOS range just keeps on growing!

A brand new range of STOS add-ons will be
released this Autumn — and Mandarin
Software wants to ensure that the titles are
exactly what you're looking for. Take alook at
the goodies below, and if you have any
suggestions to make then contact Christopher
Payne at Mandarin Software. If your ideas are
takenup you will receive free software of your
choice.

STOS Musician

+Jcon driven music editor; Dropnotes onto the
stave; see all three voices at omnce
(distinguished by colour); MIDI input;
multiple repeats

* More than 100 different tunes with a wide
range of styles — from full-length songs to
short jingles

+ Animated jukebox facility to play all or
selected songs

Price: £14.95. Available November 14

STOS Gamespack

» Four of the very best games submitted for the
recent £5,000 Awards

» Titles include Skate Tribe (fast vertical-
scrolling skateboard game), Mouthtrap
(chomp the fruit with the animated teeth
while avoiding the monsters (not PacMan!))
and Skystrike (take to the air in this Spitfire
dogfight game)

* Each one has been compiled for maximum
speed and enjoyment — these really are up to
commercial standard.

+ Both discs has a special format so that if you
have adouble-sided drive you can access the
original STOS Basic files, examine the
listings , grab routines, or modify the games
for your own amusement.

+If you have a single-sided drive you can send
for the Basic files<for just £2.

Price: £19.95 Available October 31.

STOS Vidi Digitiser

* Grab frames from video in real time — up to
25 frames a second

* Define a window on the screen to select
images — or select miniaturised versions of
the full picture down to 1/16th size (as in the
Phantom of the Opera demo)

« Store frames in banks

* Modifiable editor written in STOS Basic

+ Hardware and most software supplied by
Rombo Productions

* Grab characters like Scooby Doo into the
sprite bank for using in your games

Price: £99.95 Available December

STOS 3D

« Design you own 3D objects using a powerful
editor accessory written in STOS

» Add detail to the sides of objects: Simple
lettering, portholes, coloured bands

 Add animation so you can have a flapping
robot bird

+ Use the brand new STOS commands to fly
around or through holes in objects and view
from any angle

» Full collision detection so you can blast ships
out of the skies or crash into them. You can
even blast holes in wings and see through
the gaping gap!

« Fully documented so you can put STOS 3D
to work immediately

+ Includes demonstration game, example
programs and pre-defined objects

e Written over the last 18 months by 3D
experts who are putting the finishing
touches to a3D megagame to be released in
spring 1990 on ST, Amiga and PC.

Available in spring 1990

If you have any music suitable for STOS
Musician, any top-notch games for future
compilations, or suggested improvements to
STOS Compiler or STOS Maestro, get in
touch with Mandarin now!

® 0 0000000000000 COCEOGSOONONOIEOEOIOIEOEOEOEEOOEOEEOEOTEOTOIEOEEOTEOPEEOTTOTTST

®© 0 000000000000 00000000 OOCGOGIEIOGOIOEOIEPOTOINTOPEDOPIOIOINPOTIEOEOTETOTEOITOCSETE

AUTOBACK

24

Speeding up STOS

Stephen Hill takes a close look at the Autoback
command and comes up with some surprising
conclusions

After a whole year's worth of deafening silence,
the lunatic who wrote the STOS Basic manual
has finally been persuaded to speak out. Actually
I’ve been rather busy over the past few months,
as I've been working night and day on my forth-
coming new book. Hopefully it should answer at
least a couple of the more pressing questions
you’ve been airing in the STOS Newsletter. Such
as how the heck do you write a game in STOS
Basic?

There’s also a terrific section on the STOS
extension system. Suffice it to say, I'll be sup-
porting this by providing real help to all you
budding extension programmers. I’'m already
encouraged by the excellent work by people like
David Thomson, who cleverly converted Fast
Basic’s speech system for use with STOS Basic.
Hopefully the STOS basic story will be entering
anew phase, with the active participation of the
users in the development of the language. Drop
me aline viaMandarinif youhave anyideas—I'd
be delighted to hear from you.

Well, that’s the plug over with. Now for the
interesting bit. While I was working on the book,
I discovered several surprising new features of
the STOS Basic system. Probably the most star-
tling of these concerned the AUTOBACK direc-
tive. As youmay know, AUTOBACK automati-
cally copies any graphics you draw on the screen
into the sprite background . Unfortunately there’s
just a teeny weeny logic bug in the design!

WhenlI finally had the chance to give AUTO-
BACK, a thorough work out, I was amazed to
learn how inefficientit turned out to be. Take the
following example:

10 timer=0:? “Start”
20 mode 0
30 for i=1 to 1000

40 draw rnd(310),rnd(190) to
rnd(310),rnd(190)

50 next i

60 ? “Stopped at”,timer/50.0

In practice, this program executed in around
8 seconds with the AUTOB ACK feature switched
on. But when I added a couple of lines to deacti-
vate the AUTOBACK system, the timings
dropped to an impressive 5 seconds:

35 autoback off
55 screen copy physic to back

The screen copy at line 55 moves the new
picture you have created straight into the sprite
background in one smooth operation. Further-
more, providing you don't intend moving the
sprites while the graphics are being drawn, the
results of the two approaches are identical — but
the screen copy system is much faster.

The amount of time you can save with this
trick will obviously depend on the type of graph-
ics you are attempting to produce. If you are
drawing only a few lines (10 or less), the AUTO-
BACK feature is actually marginally faster. On

. the other hand, if you are generating more com-

plex graphics such as circles and boxes, even the
most trivial drawings will be speeded up signifi-
cantly using the new system.

There is also one other problem with AUTO-
BACK which effectively drives the final nail in
its coffin. AUTOBACK is totally incompatible
with the screen flipping technique used by many
games (including ZOLTAR).I've explained this
technique in considerable detail in my new book
as it’s essential for the production of realistic
screen animations on the ST.

If the LOGICAL screen used by the drawing
commands is different from the PHYSICAL
screen which is being displayed, then AUTO-
BACK will always copy the wrong information
into the sprite background. Whenever a sprite is

8 AUTOBACK

moved, the currently active display will be mis-
takenly updated from the hidden screen your
program is busily constructing. This will inevita-
bly transform your game screen into a hopelessly
confusing jumble. It’s quite possible that you
have already encountered this difficulty during
your experiments with screen flipping. The solu-
tion is simply to add an explicit AUTOBACK
OFF statement at the start of your program, and
copy the LOGICAL screen into the sprite back-
ground after the image has been completed. In
order to synchronize your screens withyour sprites,
you'll also need to perform the sprite movements
directly using UPDATE or SYNCHRO (seepages
101 and 151-152 of your STOS Basic manual for
more information.)

For me, AUTOBACK is one of those ideas
which look great on paper, but which don’t quite
work out inreality. I've already placed conspicu-
ous AUTOBACK OFF statements in most of my
own programs, and in some cases the improve-
ment has been pretty dramatic. So examine your
programs carefully. You may be able to speed
things up by over fifty percent with just a couple
of extra instructions!

Warning! AUTOBACK is automatically
reactivated by CLS and MODE. You should
therefore always remember to place your AUTO-
BACK OFF directive after these commands have
been executed in your program.

Gilbert in STOS!

It can now be revealed that Again Again's
Gilbert was written in STOS Basic and com-
piled with the first working version of the
Compiler to arrive from France.

Chris Payne at Mandarin Software agreed
to let the development team leave off the
proper credits as they felt it would affect
sales — but on the understanding that the
truth would be revealed after the game had
been on the market for a few months.

You can check for yourself by using a
disc sector editor to look at the program:
You'll see Frangois' name close to the begin-
ning of the file!

Snippets

A team in Toronto, Canada, are using STOS
Basicto conductlightning research—and are
so enthusiastic about STOS that they've set
up their own bulletin board.

STOS Atlas is on sale in Australia. Pactron-
ics, one of the leading distributors, isrespon-
sible for this three-disc educational package
which provides information on more than
200 countries. You can even see the planets
orbiting the sun moving at different speeds
u with pop-up messages to identify each one.

Richard Gale wins last month's typing com-
petition with a high specification program
which comes with more than 50 carefully
graded lessons for you to type — there's even
amini typing game. Richard wins copies of
STOS Compiler, STOS Sprites 600 and

STOS Upgrade

Update your copy of STOS to V2.4 — the
latest version which comes with the STOS
Compiler (now working with TOS 1.4).

For just £2 you will receive a complete,
replacement Language di ¢ containing Basic
2.4, the single-precision floating point rou-
tine (SIN and COS run 30 times faster) and
CONVERTBAS to modify any programs
with floating point to work with the new
Toutine.

Send cheque or PO to Aaron Fothergill.

STOS Maestro Plus.

Andrew Braybrook, author of Paradroid,
Uridium, and other classics has used STOS
to create the maps for his latest masterpiece:
Rainbow Island (the sequel to Bubble
Bobble).

MIDI

26

Using MIDI with STOS......

Aaron Fothergill delves deeper into
the magical mysteries of MIDI

In my last article on MIDI with STOS, I demon-
strated how the MIDI line could be used to trans-
fer data between 2 ST’s. The original idea of
MIDI was to enable musical instruments to talk
to each other and to computers, so this article will
deal with talking to synthesisers (or home key-
boards that are MIDI’ed). Firstof all let’s start by
looking at the way the MIDI commands work:
As previously explained, MIDI is a standard
of data communication where one musical in-
strument (computers also count as musical in-
struments except for the ZX81!) can tell another
what notes to play or what sound to use. Each
such instruction has a command number. Each
MIDI message is made up of a command byte,
and then one or two data bytes (System Exclu-
sive can send more than two).
MIDI designates all bytes from 128-255 ($80-
$FF) as commands.
Those from 128-239 ($80-$EF) are ordinary
common commands such as Note On (§9nmeans
‘play anote’) or Pitch Bend ($Enmeans ‘change
pitch of notes currently being played’).
The commands from $FO to $FF are System
commands, the most common of which being
$FO0 the System Exclusive command (SYS EX)
& $F7 End of System Exclusive (EOX). The
other system commands for those who are inter-
ested are:-
$F2 Song Position Pointer (for sequencers)
$F3 Song Select (ditto)
$F6 TuneRequest (rarelyused inmodemsynths
as they tend to stay in tune) $F8 Timing
Clock (sequencers send this out so that
other sequencers can keep time with them)
$FA Start>
$FB Continue > For Sequencers
$FC Stop>
$FE Active Sensing (Allows a synth to make

sure itis still connected. Generally referred
to by MIDI programmers as Pain in the
A¥** code

$FF Reset. Resets the Synth (a last resort!)

For writing Synth Editors and Librarians all
you need to worry about are $F0,$F7 and $FE
(which:you have to filter out). To do a sequencer
you need to consider just about all the command
bytes as they will all get used at some point!

First things first though! We will go through
the common commands, starting with the Note
On command ($9n). The ‘n’ stands for the Chan-
nel Number as ordinary MIDI data can be sent
over 16 different channels (§0-F). This applies to
all the common control commands. So to tell our
Yamato auto electronic home keybored (not
misspelt!) to play a middle C on channel 1 (The
only thing the MIDI people haven’t decided on
yet — some manufacturers call middle C C3 and
others callit C4!) you would have to send 3 bytes
to the synth.

Byte 1: $90 (Note On channel 1)
Byte 2: $3C (Note value for Middle C)
Byte 3: $7F (Maximum velocity)

The Velocity byte (#3) tells the synth how
hard you hit the key when you played the note.
Some Synths respond differently as you play the
key harder.Thus the velocity parameter.

To do this in STOS:

10 open #3,”MIDI”: rem open the MIDI
line

20 M$=chr$($90)+chr$($3C)+chr$($7F):
rem get the MIDI data ready

30 print #3,M$;: rem the semi-colon is

&)

40 close #3
RUN
Assuming your synth is connected it should

27

MIDI

now be doing a rendition of Phillip Glass’ latest
hit“Long note of Middle C”'! To turn the note off,
you must send the equivalent NOTE OFF ($8n)
commiand for the same note number on the same
channel so change line 20 to

20 M$=chr$($80)+chr$($3C)+chr$($7F):

rem Note off

RUN

Ah peace at last. (If this doesn’t work and
you're not a Phillip Glass fan, reset the Synth or
switch it off and on again, then make sure you
typed the program in correctly.) The next most
useful commandis the program change command
(3Cn) which allows you to change the sound
being played by the synth (assuming it has more
than one sound!). Program change only has one
databyte, which is the program number to change
to. Edit the program to read:

15 input “Patch Number “;P: rem Get
Patch Number

20 M$=chr$($C0)+chr$(P): rem Change
to program (patch) P

RUN

Your synth should now have changed to the
patch number you typed in (remember patch
numbers start at 0). Experiment with the patch
number value in the program to change the patch
numbers on your synth.,

By now you should be getting the hang of
sending data to your synth, so let’s have a go at
receiving some data back from it. Note the extra
spaces needed in lines 205 to 214 to ensure a neat
display.

1rem iahieialaleiole *

2 rem * MIDI MONITOR PROGRAM
3 rem * Aaron Fothergill

4 rem * STOS Club 1989

5 rem ARARARAARRRRARAARRRAAAARAA

6 mode 1 : key off : curs off

7 fade 1,$0,$777,$700,$7

10 open #3,”MIDI”

20 C=0: D1=0 : D2=0

25 gosub 200

30 I=-1 : while 1<0 : I=port(#3) : wend

35 if I=$FE then 30 : rem filter out active
sense

40 if 1<$80 then D1=l : goto 50

45 C=| : D1=port(#3)

50 if C>=240 then gosub 100 : rem clear
line of SYS EX data

55 if (C and $F0)=$CO0 or (C and $F0)=$D0
then D2=0 : goto 70

60 D2=port(#3)

70 locate 10,10 : print “Com:$”;right$(“
“+mid$(hex$(C),2),2);” D1:$”;right$(“ 0
100 I=1 : while 1>=0 : I=port(#3): wend :
return

200 paper 3 : pen 1 : locate 0,0 : centre
“STOS Club MIDI Monitor Mk1”

205 paper 1 : pen 0 : locate 40,5 : print ¢
Command Values “

206 locate 40,6 : print “
207 locate 40,7 : print “$8n- NOTE OFF

208 locate 40,8 : print “$9n- NOTE ON

209 locate 40,9 : print “$An- POLY AF-
TERTOUCH “

210 locate 40,10 : print “$Bn- CONTROL
CHANGE *“

211 locate 40,11 : print “$Cn- PROGRAM
CHANGE *

212 locate 40,12 : print “$Dn- CHANNEL
AFTERTOUCH”

213 locate 40,13 : print “$En- PITCH
BEND *

214 locate 40,14 : print “$F0-FF SYSTEM

219 paper 1 : pen 2 : return

Most of the program should be fairly familiar
if you read the first article. Line 30 for instance is
the bog standard ‘wait until there is some MIDI
data’ routine (returning the first byte in variable
I). You will probably notice the check on line 40
which looks to see if the data is less than $80
(128). This.is because most modem synths use
something called Running Status whereby they
will send acommand byte and then only send data
bytes until the command changes (thus saving
data and time). So ourprogram checks to see if the
datais acommand. If it isn’t then the program re-
members the last command sent and the first byte
must therefore be the first data byte, The check on

MIDI

28

line 50 gets rid of any System commands as this
monitor is not equipped to handle them fully.
The Command # is checked on line 55 for Chan-
nel Aftertouch and Program Change, as these
only use 1 data byte. The second data byte being
read in from the MIDI line on line 60. The data
is printed to the screen online 70 and the program
loops back to line 30 for the next MIDI com-
mand.

Once you've typed the program in, connect
the MIDI out of your keyboard to the ST’s MIDI
in and hold down a (synth) key. You will notice
the display come up with something like:

Com:$90 D1:$3E D2:$40

This particular one is a Note On on channel 1,
note number $3E (D3) at velocity $40 (Half).
‘When you release the key the command will
change to $80 for Note Off. Now try pressing the
patch select/change buttons and moving the con-
trollers on your synth and seeing what data you
get.

System Exclusive on synths

Most of the modemn synthesisers and quite a few
of the home keyboards can send patch data via
MIDI.This is all the data that tells the synth how
to create the sounds. Some synths send 1 Patch at
a time, some a whole bank and others can send
either. The next program will enable you to re-
quest a data dump from your synth and read it
into the ST’s memory so that it can be saved to
disk. This enables you to save more sounds than
the synth can normally hold on its own. This
program is set up to request a single voice from
a Yamaha DX21 synth. It will also work on the
DX27, DX100 and TX81Z synths. To change it
to work on other synths edit the data in line 45 to
the requestmessagerequired by your synthesiser
(Itis usually in the back of the manual. You want
‘request dump’ or similar). To use the program
click on Load or Save on the alert box (you can
use the alert box routine in your own programs)
to either Load the sounds from disk and send
them to the synth or to get the sounds from the

synth and Save them to disk. Then let the pro-
gram do all the hard work.

1rem** i

2 rem * MIDI Sys Ex Dumper prog

3 rem * By Aaron Fothergill

4 rem * STOS Club 1989

5 rem b

8 reserve as work 5,8000 : rem reserve
plenty of space to put the dump In

10 mode 1 : key off : curs off : fade
1,$0,$777,$700,$7

15 open #3,”MIDI”

20 AL$="Do you want to LOAD data
from disk|or SAVE it ? ## LOAD A SAVE
“: gosub 1000

25 clw : print “Getting data from synth”
30 if Q=1 then 200 : rem LOAD data from
disk and send it to synth

35 paper 3 : clw

40 M$=""" : repeat : read D :
M$=M$+chr$(D) : until D=$F7 : rem read
data until EOX

45 data $F0,$43,$20,3,$F7

50 gosub 500 : rem clear MIDI line of old
data

55 P=start(5) : rem point to the start of
our data bank

60 print #3,M$; : rem the semi-colon is
vital!

65 I=-1 : while 1<0 : I=port(#3) : wend : if
I=$FE then 65

70 poke P,l : inc P : if I<>$F7 then 65

80 rem save it to disk

85 F$=file select$(“*.VOX”,"Save voice
data to disk as .VOX file”,1) : if F$=""
then 300

90 bsave F$,start(5) to P-1 : goto 300
199 goto 20

200 paper 2 : clw : F$=file
select$(“*.VOX”,”Load a .VOX file from
disk”,1) : if F$=""" then 300

205 bload F$,start(5)

210 P=start(5)-1 : rem point to the start
of the data -1

215 inc P : print #3,chr$(peek(P)); : if
peek(P)<>$F7 then 215

220 goto 300

300 AL$="Do you want to do another ? |
YES A NO “ : gosub 1000 : clw : if
Q=1 then 20

305 end

500 Z=1 : while Z>=0 : Z=port(#3) : wend
: return

29

MIDI

997 rem do an alert box in any resolution
. (screen destructive)

998 rem gosub 1000 with AL$ containing
data 1-2 line of text (| as separator) en
ded by ## then data for 2 buttons (» as
separator)

999 rem e.g AL$="Do you want to load
or|save the data ? ## LOAD A SAVE
“:gosub 1000

1000 LL=instr(ALS$,”|”)-1 : if LL<O then
LL=instr(ALS,”##")-1

1005 paper 1 : pen 0 : XX=39-LL/2 : YY=8
: locate XX,YY : square LL+2,6,1 : for
Z=11to 4 : locate XX+1,YY+Z : print
space$(LL) : next Z : L1$=mid$(ALS$,1,LL).
(L2$=mid$(ALS,LL+2,instr(ALS, " ##”",LL+1)-
LL-2) : locate XX+1,YY+1 : print L1$; : |
ocate XX+1,YY+2 : print L2$;

1010 reset zone : NQ=2:
EL=instr(ALS,”##")+2 : Q$=mid$(ALS,EL)
1 Q1$=mid$(Qs$,1,

instr(Q$,”~”)-1) : Q2$=mid$(Q$,instr(QS,
7AM)41) 1 if Q1$="" then Q1$=Q$% : NQ=1
1015 locate 39-len(Q1$),YY+4 : paper 2 :
pen 1 : print Q1$; : locate 41,YY+4 : p
aper 3 : pen 1 : print Q23 : set zone
1,xgraphic(39-len(Q1$)),ygraphic{YY+4)
to xgraphic(39),ygraphic(YY+5) : if NQ=1
then 1025

1020 set zone
2,xgraphic(41),ygraphic(YY+4) to
xgraphic(41+len(Q2$)),ygraphic(YY+5)
1025 while mouse key=0 : wend : while
mouse key<>0 : wend : Z=zone(0) : if Z<1
or Z>2 then bell : goto 1025

1030 Q=Z : ND=1 : return

Anyway that’s enough on MIDI for one ar-
ticle. More in the next one about the Control
Change messages. If you’ve any queries just ring
me on the Helpline. |

SKYSTRIKE PLUS

Take to the skies in this highly addictive World

War II air combat game.

56 levels of dogfighting, tankbusting, train

demolishing, battleship sinking, ground at-

tacking action over 401 detailed screens.

« 17 frames per second screen update (same as
Xenon I)

+ Sampled sound effects

« Loads of hidden features

« Intro demo disc with three-way parallax
scrolling, stunning graphics and sampled
soundtrack

* Fully compiled — no need to own STOS
Maestro

+ Cut-down (eight level) version selected for
the STOS Games Pack

"One of the best entrants for the STOS
Gameswriter Awards" — Chris Payne, Man-
darin

Available now: £9.95 for two discs

(£11.95 for non-STOS Club members)

All the above titles written by Aaron Fothergill and work on both 520 and 1040ST.
Send cheque or postal order payable to Shadow Software to:
Shadow Software, Barnstaple, North Devon .

TOME (TOtal Map Editor)

‘Write high-speed mapping games like Gaunt-
let! TOME is a STOS extension command set
which enables you to create games like Alien
Syndrome, New Zealand Story and Gauntlet.
+ High-speed machine-code routines

* User-friendly editor system

* 240 tiles per screen

* Fully documented with demo and example
programs for you to dissect. Includes Jitter-
bugs Il — a 1 or 2 player (via datalink) game
with sampled sound effects and great graphics.
Available now: £14.95 for two discs
(£18.95 for non-STOS Club members)

Coming soon: RAFHIC — Click on a button
and watch as RAFHIC writes your shoot-'em-
ups for you in STOS Basic!

Icon STOS Basic—The ultimate way of learn-
ing to program in STOS, this 'teach yourself'
system will have you writing STOS games in
a week!

—

LETTERS

30

TORTOISE PRINTING

Up until now I have not written to you because
each and every query that I have come across
and, in some uncanny way, just as I have come
across ithas been answered by the current news-
letter. Coincidence or what, it has stopped many
mutterings!

My only small complaintis that STOS seems
to take a long time to LLIST a program (via my
Epson printer) and forever (chess anyone?) for a
screen dump. Yes, I do set the printer up first.

Can anyone out there come up with a listing
for a printer SPOOLER.ACB? Preferably size
adjustable from say 6k for textto 32k forascreen
dump.

Clive Swain, Greenford, Middlesex

See STOS Word for a fast print routine — avail-
ablefree of chargeto everyonewho resubscribes
for next year.

SPRITES HELP

Is there going to be a version of STOS where NO
line numbers are used?I find ita lot easierto give
each section/routine a name/label to go to rather
than a line number. This makes writing and
altering programs (especially long ones) easier
to re-organise either with a built-in editor (move
cut/paste etc) or to edit using another word proc-
essor on the file. Is this the feeling of anybody
else?

There is also a problem when using the multi
mode SPRITE2.ACB accessory. When in low
res mode depending on the size and number of
sprites you are restricted to a limited quantity
stored in bank 1. This is caused by the lines 135
and 226 in the SPRITE2.ACB program.

You can change these in the normal way of
loading STOS and then loading in the file as a
normal programie. Load “sprite2.ach”. You will
then have a listing of the accessory and can
change lines 135 and 226. The value BANK-
MAX can be increased. I have increased it to
$20000 with no problems but obviously the
amount of free memory has to be considered
when increasing the value of BANKMAX.

Someone was asking if there was a way of
replacing the screen after closing a window
without using copy to back/logic etc. What I
have been doing is working out the window area
before opening it (this only works with a non-
moveable window) and then copying the same
area into a string variable with the command:

S$=SCREEN$(scrn,x1,y1 to x2,y2)

Then restoring the screen after closing the
window with the command:

SCREENS$(scrn, x,y)=S$

Page 148 in the manual will explain.

Can anyone help me with a problem? I am
writing a program (strategy game) which in-
volves using alot of calls to gosubroutines. Each
routine is ended with a return which is always
reached for each routine. But having performed
a number of calls to these routines (about 50+
times) the computer responds with Too many
Gosubs in line.] have tried the FREE command
to force a garbage dump but with no success.
Does anybody know the answer?

Finally could I point out that you do not have
to write a routine which displays a load/save se-
lection box, which I did. One simple command
does all this for you already! Take a gander at the
bottom of page 218 in the manual for the built-in
Load file selector and the bottom of page 23 for
Save file selector for more info. I wish I saw it
$%N&* earlier!

L Groves, Swindon, Wilts

SCREEN EXPLAINED

Here is a brief description
of Back, Physicand Logi .f 3
The STOS screen isT:i(
divided into three areas, | -
LOGIC, PHYSIC and ig
BACK.
LOGICThisis the area

31

LETTERS

of memory which all output goes to. If
you print or plot then all will go to the
logic area.

PHYSIC This is the area of memory you actually
look at. Initially, after you bootup STOS,
logic and physic point to the same areain
memory so everything you print or plot
can immediately be seen.

BACK This is the area of memory which is used
as an ‘underlay’ to logic. So if a sprite
passes over an area of ‘logic’ screen,
logic willreferto ‘back’ to fill in after the
sprite has passed. If back is changed, ie.
a piccy loaded into it, then to view the
screen you must somehow update logic
or physic. Either use the APPEAR com-
mand or set PHYSIC=BACK. NB. If
you set PHYSIC=BACK then you will
notbe able to see what you type until you
either change physic or logic. For ex-
ample:

100 reserve as screen,b

110 reserve as screen,7

120 load “picture.neo”

130 logic=start(6)

140 print “This is screen 6”
150 logic=start(7)

160 print “This is screen 7
170 logic=physic

180 print “Press a key”

190 wait key

200 screen copy 6 to physic
210 print “Press another key”
220 wait key

230 screen copy 7 to physic

Here’s how it works:

100-110 reserve memory banks 6 & 7 as screens
120 load picture to current output screen to watch
while other things happen

130 set logic so all output (print/plot etc) goes to
screen 6

140 print message to screen 6

150 set logic so all output (print/plot etc) goes to
screen 7

160 print message to screen 7

170 set logic so all output (print/plot etc) can be
seen

180-230 waits for akey to be pressed then copies
screen 6 or 7 to be seen on physic

Another example would be of a driving type
game where you normally see the road but with a

“press of the right key you switch to a map but

continue drawing the road without messing the
map up. Thus:

100 if K$="M” then physic=start(6) 110 if
K$="R” then physic=logic

The above two lines demonstrate how you can
flip between a map (if K$="M") and the road
view (if K$="R").

George Ford, Dorking, Surrey,

GRABBING GAME SPRITES

I am writing in reply to the letter about taking
sprites from games. The easy way-to do this is to
list the directory and look for files with .SPR
extensions as these are normally sprite files. Then
it is a matter of using the STOS sprite editor
program to dig them out. Other sources may be
.PI1 or .NEO files. It is just a matter of going
through the files carefully. Most of the Atari
games packs which come with the computer can
be dealt with like this.

Another hint — if you have a double-sided
drive and a formatter that does about 850k you

2, can stick the STOS language disc and the ac-

cessories disc on one disc
to reduce disc swap-

b N

ping.

: Daniel Bates,

Selsey, West

LETTERS

32

HARD DISC PROBLEM

Just one problem so far with STOS. I have it in-
stalled on my 60MB hard disc and it seems to run
ok. HoweverIhave problems with the sprite edi-
‘tor. If T install it straight away after boot up then
itruns okay. If I install the sprite editor and then
another utility, for example the music editor,
then when I recall the sprite editor it will not
work properly. It willnotdraw to the main screen
and I cannot change the colours as the colour
change cursor is missing. This does not happen
aslong asIinstall the sprite editor first off and on
its own. Any ideas? I have already tried unpack-
ing and recopying from the original floppies to
the hard disc but that doesn’t seem to help. I can
of course still use the package —it’s just that with
aMega 4 ST it would be nice to keep all of the
utilities loaded and to hand inmemory whenlam
working.

I have tried to raise Mandarin on the phone
but tono avail. Iwonder if other users have found
this problem? Anyway, apart from that it really
is an impressive package and I am well pleased
with it.

Mike Moseley, Trevillick, Tintagel,

Itisdifficult to get through to Mandarin, but the
situation has recently changed as the company
now has its own lines rather than you having to
use the general Europress number. You can
reach them on but Mandarin
would rather you wrote in as there's
*¢krp only Richard Vanner who knows STOS
in detail — and he's bogged down with

AMOS and the new STOS add-ons!.

MAESTRO HAPPY

I have recently purchased the Maestro sound
sampler and am extremely pleased with it. The
ease with which you can capture and manipulate
sound samples has to be seen and tried to be be-
lieved.

Iinclude a listing for a short modification to
MAESTRO.ACB which enables you touse quick
keyboard inputs to manipulate the samples and
lets you change pitch, add repeat, Joop and sweep
as well as loading and deleting of samples. The
key calls are:

L =Load a sample .sam
P =Play a sample

R = Replay a sample

M = Load sample .mbk
B =Load a sample sam bank
+ = Increase speed

—= Decrease speed

0 = Samstop/reset
1=Loopon

4 = Sweep on

7 = Play backward

Just type in lines 421-439, add line 405 and
away you go. I also suggest that you delete the
two PRINT commands in line 1380 as this will
stop the screen scrolling up when you want to
play a sample.

405 samstop: samsweep off: samloop
off: samdir forward

410 gosub 900)

420 OPTION=mnbar: CHOICE= mnselect
421 K$=upper$(inkey$): rem Keyboard
Commands

422 if K$="L" then 740

423 if K$="R” then 1430

424 if K$="P” then 1370

425 if K$="D” then 1140

426 if K$="M" then 1080

427 if K$="B" then 1590

428 if K$="+" then inc Y

429 if K$="-" then dec Y

430 if K$="0" then samstop: samsweep
off: samloop off: samdir forward

431 if K$="1" then samloop on

432 if K$="4" then samsweep on

? LETTERS

433 jf K$="7" then samdir backward
439 if OPTION=1 and CHOICE=3 then
1490

Alan Ward, Purley, Surrey

SCROLLING ALONG After seeing hundreds of STOS games I've got

rather tired of the APPEAR routines whichnearly
Here's another way to create a scrolling message everybody uses in their programs. So what I plan
across the screen — you'll find it in one of the to do is produce a new screen appear every issue
Swedish games in the PD library. to add a bit of variety. If you can come up with a
routine along similar lines, please send it in.

5 TEXT$="Press the fire button on the Anyway, here's my routine, but make sure you do

joystick to play the game"

10 def scroll 1,0,184 to 320,192,_4,0 a RESERVE AS SCREEN 10 first and load an
20 repeat appropriate picture into it:

30 scroll 1 : wait vbl : scroll 1 : wait vbl '

40 locate 39,23 : Inc PEK : print :/0 rem Picture Splurdger by Richard
mid$(TEXTS$,PEK,1); anner

50 if PEK=len(TEXTS$) then PEK=0 20 key off : curs off : flash off : mode 0
60 until fire 30 logic=physic : show on : F$=file

select$(“*.NEO”,”Select Pic to
splurdge!”) : if F$="" then end

EXTRA TIP 40 logic=back : hide on : load F$,10 : get
Clarification of a minor problem with the STOS gg'fe"ez(_"& ;Y:):QtQ ' rz_=1 00
Compiler. If you use the COLLIDE() command O & w0 0 Slep-T : screen copy

. A 10,0,Y1,320,Y1+1 to logic,0,Z : next Z
youmay only use anumber(?ravex‘nablems1det11e 60 for Z=Y2 to 200 step 1 : screen copy
brackets. Any form of equation will cause an error 10,0,Y2,320,Y2+1 to logic,0,Z : next Z
when compiling. It is possible that some of the 70 dec Y1 :inc Y2 : wait vbl : screen
other instructions may have this problem, so if swap : screen copy physic to logic

80 if Y1<>-1 then goto 50
90 repeat : until mouse key<>0
100 goto 30]

your compiler has trouble in compiling certain
programs then check for functions which have
fiddly bits in them. For example the following

will most likely cause the compiler to have a
minor nervous breakdown: %

if collide B
((WIDGETNUM*FLANGTIME 9w
+2),XA242*Y,Y+3)=1 then ... @

‘Whereas this will work: @

A=WIDGETNUM*FLANGTIME+Z: e
B=XA242*Y: C=Y+3 if collide ISR L)
(A,B,C)=1 then...

PUBLIC DOMAIN i

Build up your collection of

...and learn more about STOS at the same time

Listed alongside you'll find a good selection
of interesting programs with something for
everyone. Each disc costs just £2 each — or
£1 if you supply your own disc. They are
supplied in single-sided format on double-
sided discs unless stated otherwise. Three of
the discs are shareware — the authors will
receive payment from every disc that's
ordered (deduct £1 if you supply your own
disc). Eachdisc has a specially-printed STOS
Public Domain coloured label produced by
Mandarin Software to match the rest of your
STOS master discs.

Inmostcases the programsrequire you to
boot yourcopy of STOS first— that way you
can have a good nosey at the listing!

Choose from the following;

SPD1S: Caves of Rigel — a well-designed ar-
cade-type game converted from the Atari 8-bit
commercial release on Atlantis Software by the
original author, Ralph Effemey. There's also
another game from Ralph: A Froggy Day in
Londonbased on the classic arcade game Frogger.
SPD16: STOS Demo—The first demo created for
useinshops—no great shakes, butincludes anice
tune you can grab!

SPD17: STOS Demo2 — The cycling demo you
may have seen at the shows, using Jan Waugh's
attention-grabbing tunes from the Accessories
disc. (Double-sided only)

SPD18: STOS Add-ons Demo —The latest demo
from Mandarin with sampled sound—~you'llneed
the Maestro extension to run this.

PD10: Xmas Demo — This double-sided disc
contains a well-executed and amusing spoof of
the nativity.

PD14: First Serve—Wimbledon revisited in this

Many of the Swedish demos are rather
lacking in documentation — some of the
instructions are written in Swedish! How-
ever you should be able to suss most of the
games out anyway.

Ring Sandra on to find out
about the latest public domain titles to be
added to the library. ,

If you have any programs which may be
suitable please send them along. You can
also get something back for your efforts by
making your submission shareware.

Send cheques, postal orders or stamps to:
SandraSharkey,

one-player against the computer tennis game.
PD19: STOS listings — Programs and routines
from Newsletter 4.

PD21: STOS Basic Update—Upgrade your copy
of STOS to version 2.4. It also works with the
new TOS 1.4 chip.

PD22: Fun School 2 demo — See two programs
from each of the three packages (two 360k discs
[£4] or one 720k disc).

SHS: Brain Games — A selection of thinking
STOS games (Gridder, Minefield, Rotation, Soli-
tary and Swopper) from Pete Gerrard and Sandra
Sharkey. (£4.25)

SH7: STOS Games — A selection of simple
STOS games by Mike Brown. (£3.00)

SHY: Kids Games — Five games for pre-school
andprimary children by David Alexander. (£3.00)
PD23: Swedish One — Two games submitted in
the Swedish competition.Yatzy is a cleanly-de-
signed version of the dice game Yahtzee with a
good tune, and Virus is a flip screen maze game
in which you are a cute-looking alien searching

N PUBLIC DOMAIN

STOS programs

formissing 3.5" discs! Some great sprites for you
to grab.

PD24: Swedish Two — Fia is a version of Ludo
controlled with the mouse pointer — good fun for
kids. Mario is an infuriating platform game, and
Rush is a 'shove-the-bricks' to solve the puzzle.
PD25: Swedish Three — Saga Castle is an ambi-
tious multi-screen platform game with lots of
puzzles to solve. Stratego is a simple war game.
PD26: Swedish Four — Frog Race is a complex
game in which you bet on anumber of excellently
animated jumping frogs which race towards the
finishing line. Upstart is a nicely put together
shoot-'em-up

PD27: Swedish Five — Acid Remix is a sproused-
up version of the old standard Snake game with
some clever sampled sound at the beginning.
PD28: Give Us a Break— An excellent version of
the popularpub game based on DLT'sradio show.
Try to pot all the snooker balls by answering
multiple-choice questions with difficulty related
to the value of each ball.

PD29: Home Finance — Quite a good financial
program.

PD30: Maestro Samples One — A marvellous
collection of samples put together by Martin
Walker, author of a number of commercial C64
games including Chameleon, Hunter's Moon and
Citadel. He also did the music for Armalyte —and
the samples include effects used in some of these
games plus some newly-created ones.

PD31: Maestro Samples Two — A wide selection
of useful sounds for use in your games, recorded
at 6Khz (12Khzif double density). Includes laser
bolts, alarm, pulse, scream, warble, warp, take-
off and tinkle — 20 in all.

PD32: Maestro Samples Three — Eleven more
samples including alarms, aucking, fountain, hum,
shoot, tantrax and up/down.

PD33: Thunderbirds — An entertaining homage
to the cult TV show with amusing animated se-

quences, great music and top class' Maestro
samples.

PD34: Phantom of the Opera— A superb music
demo which combines Vidi-digitised animated
clips from the video of the classic Iron Maiden
tune you hear in the current Lucozade ad.
PD35: TOME demo — Try out for yourself this
sophisticated multi-screen map editor with built-
in machine-code scrolling routine.

PD36: PCP —The full-screen editor which allows
you to forget about line numbers and add labels
and procedures to STOS (see article on page 10).
The disc also includes the rest of the listings from
this issue.

PD37: STOS Typing Tutor—The winning entry in
Issue 4's competition. Richard Gale's excellent
program has 50+ exercises and a built-in typing
game.

PD38: ST Wizard — Richard Gale (again) has put
together a top-notch demo: Spiralling sprites
casting shadows on a checkerboard landscape, a
scrolling message and along sample of the Top of
the Pops theme tune. Just great! (Any ST with
double-sided drive)

PD39: STOS Paint — A feature-packed art pro-
gram written by Ralph Effemey which loads as an
accessory so you can flip to it with ease. A unique
feature allows you to paint with sprites from the
spritebank. Also on the disc is the dealer demo for .
STOS Maestro (requires extension). (£5.00)
PD40: Blood Money — Andrew Webb has
crammed his adaptation of the theme music for
this Amiga game (2.57Mb of music) into 350k
with clever use of looping and repeat phrases. It
plays for four minutes in all. (Requires 1IMb) M

Coming soon; The Poltergeists (creators of
the excellentThunderbirds demo) will be bring-
ing you their latest production—Batman! Avail-
able soon ... walch this space!

NEWS EXTRA

36

STOS at the Atari Show

Mandarin Software had tremendous success with
its stand where Richard Vanner and Chris Payne
spent the whole time demonstrating the range of
software available — concentrating about 50% of
the time showing off STOS products on a 37-
inch monitor. They showed off the Gameswriter
winner (see below) and highly commended titles
such as Mouthtrap, Pukadu, Arthur of the Brit-
ons, Skate Tribe, Dice, Poker Dice, Wild River
Run—and many more. Some of these will appear
on acompilation—others may be available on the
public domain or on an ST magazine's cover-
mounted disc.

STOS on public domain

Many of the top PD libraries are building up an
impressive collection of STOS programs for ev-
eryone to try out. And PD software house Budgie
have got in on the act by releasing its first STOS
game: Parabellum, which is only available from
specially-licensed public domain libraries which
send Budgie a small percentage of the money re-
ceived.

More details from: Goodmans PDL,

Longton, Stoke- on-Trent, Staffordshire

Also: The South West Software Library,
Wimbome, Dorset and Softville,
Waterlooville, Hants

STOS Plus in 1990

Frangois will be starting work on a major update
to STOS in the new year, once he's completed
AMOS and AMOS Compiler. STOS Plus will
include word processor-like environment, op-
tional line numbers, procedures, two-joystick
routine, multi-mode displays, multi-palette
screen, STE enhancements, a completely new
collection of games and much, much more. Reg-
istered STOS users will get a low-price upgrade
—so any of your friends who buy STOS now will
not lose out — and there's a good chance they'll
benefit from buying now rather than later. Price

will be around £49.95 in the late spring of next
year. Write to Mandarin with your wish list.

AMOS developments

For those of you with Amigas, or friends with
Amigas, Mandarin have produced a detailed
spec sheet for AMOS — The Game Creator,
which will now be released in January. Simply
write to AMOS Information at Mandarin Soft-
ware, Europa House, Adling- ton, Macclesfield

AMOS will be a structured language with
labels and procedures, and with its word proces-
sor-like environment there's no need if you want
for line numbers — but you can use them for com-
puted GOTOs and GOSUBs if that's how you
like to program. It will also be possible to port
games from the ST to the Amiga. AMOS will
have more than 400 commands and will support
the copper chip and blitter, allowing 48 hardware
sprites and 32 software sprites on screen at once.
The price will be £49.95.

£5,000 Awards winner

Simon Cook, a university student from Manch-
ester, took away a cheque for £5,000 at the Atari
Show for winning the title of STOS Gameswriter
of the Year. His game Cartoon Capers impressed
Mandarin with its original ideas, clever graphics
and good use of sampled sound.

The game features Karate Kat and Judo Jake
locked in head-to-head combat in a variety of
scenarios. You control Judo Jake and have a
wide range of moves at your disposal: You can
even pick up a hammer and clobber the cat over
the head, throw a bomb at him, or even spin him
round your head and propel him through a wall —
all with impressive cartoon-style animation.

Simon's game was written entirely in STOS,
compiled using the Compiler (what else) and in-
cludes sampled sounds using STOS Maestro.
Cartoon Capers will be on sale in December for
the Atari ST at£19.95. An Amiga version written
in AMOS will be released at the same time
(fingers crossed). n

